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PREFACE.

THE subject which forms the title of this work is inexhaustible.
Volumes have been published containing the results of experiments,
and yet experimental investigations, especially in regard to iron,
were probably never more numerous than at the present time. The
infinitely varied character of the materials, and of the great variety
of conditions under which they are used, renders it impossible for a
limited number of experiments to cover the whole ground. The
most refined analysis has been brought to bear upon the subject, and
yet many problems, which at first appear to be comparatively simple,
remain unsolved. For instance, no theory of the rupture of a simple
beam has yet been proposed which fully satisfies the critical experi-
menter. .

Numerous theories have been proposed from time to time in regard
to the resistance of materials under strain, but none are wuniversally
satisfactory. I do not agree with Barlow’s theory of rupture involv-
ing his “ Resistance to Flexure,” and hence I have put all references
to it in fine print, except the statement of its principles.

The general plan and scope of this edition are essentially the same
as the former one. I have, however, omitted some matter which
appeared to be unimportant, and have added considerable new matter
which, I trust, will add to the scientific value of the work.

I have given considerable prominence to the suhject of shearing
stresses and strains, Shearing strains are somewhat analogous to the
Slowing of the particles over each other. As our knowledge of the
subject becomes more eritical, this branch of it becomes more im-
portant.



iv . PREFACE.

I bave given a new formula for the deflection of a beam (Equation
(219a) ), but I have not sufficient data at hand of the proper kind
to test its accuracy in practice. It will doubtless be tested, sooner
or later, when its possible accuracy will be determined.

I have sought to present the subject in such light as to impress
upon the mind of the student that he is learning only the rudiments,
whilst a large field remains for time to explore.

It is with pleasure that I here acknowledge my indebtedness to
Professor W. A. Norton, of New Haven, Conn., and to my colleague,
Professor R. H. Thurston, of the Stevens’ Institute of Technology,
for valuable and original matter.

DE VOLSON WOOD.
HoBoxxN, February £7th, 1878,
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A TREATISE

THE RESISTANCE OF MATERIALS.

INTRODUCTION.

1. IN PROPORTIONING ANY MECHANICAL STRUCTURE,
there are at least two general problems to be considered :—

1st. The nature and magnitude of the forces which are to be
applied to the structure, such as moving loads, dead weights,
force of the wind, ete.; and,

2d. The proper distribution and magnitude of the parts
which are to compose the structures, so as to successfully resist
the applied forces.

The former of these problems may be solved without any
reference to the latter, as the structure may be considered as
composed of rigid right lines. The latter depends principally
upon the mechanical properties of the materials which compose
the structure, such as their strength, stiffness, and elasticity,-
under various circumstances.

The mechanical properties of the principal materials—wood,
stone, and iron*—have been determined with great care and
expense by different experimenters, both in this and foreign
countries, to which reference will hereafter be made.

* The properties of mortars have been thoroughly discussed by Gen. Q. A.
Gilmore in his work on Limes, Mortars, and Cements. 1862.
1




2 THE RESISTANCE OF MATERIALS.

2. DEFINITIONS OF TERMS,

Stresses are the forces which are applied to bodies to bring
into action their elastic and cohesive properties. These forces
cause alterations of the forms of the bodies upon which they
act. '

STrAIN is a name given to the kind of alterations produced
by the stresses. The distinction between stress and strain is not
always observed ; one being used for the other. One of the
definitions given by lexicographers for stress, is strain; and
inasmuch as the kind of distortion at once calls to mind the
manner in which the force acts, it is not essential for our pur-
pose that the distinction should always be made.

A TexsE StrEss, or Pull, is a force which tends to elongate
a piece, and produces a strain of extension, or tensile strain.

A Coumpressive StrESS, or Push, tends to shorten the piece,
and produces a compressive strain.

TransvERe StrESs acts transversely to the piece, tending to
bend it, and produces a bending strain. But as a compressive
stress sometimes causes bending, we call the former a ¢ransverse
strain, for it thus indicates the character of the stress which
produces it. Beams are generally subjected to transverse
strains,

Torsive STrEss canses a twisting of the body by acting tan-
gentially, and produces a forsive straimn.

LongrrupiNaL SurariNg StRESS, sometimes called a detru-
stve strain, acts longitudinally in a fibrous body, tending to

" draw one part of a solid substance over another part of it; as,
for instrance, in attempting to draw the piece
A B, Fig. 1, which has a shoulder, through the
mortise (), the part forming the shoulder will be
4 forced longitudinally off from the body of the
piece, so that the remaining part may be drawn
through. (See also Fig. 31.)
"TrANsVERSE SuEArING STREsS is a force which acts trans.

FiG. 1.

versely, tending to force one part of a solid body over the adja-
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cent part. It acts like a pair of shears. It is the stress which
would break a tenon from the body of a beam, by acting per-
pendicular to the ‘side of the beam and close to the tenon. It
is the stress which shears large bars of iron transversely, so
often seen in machine-shops. The applied and resisting forces
act in parallel planes, which are very near each other.

Serrrrine STrEss, as when the forces act normally like a
wedge, tending to split the piece.

3. PHME EFFECT OF THESE STRESSES IS TWOFOLD :—1st,
‘Within certain limits they only produce change of form ; and,
2d, if they are sufliciently great they will produce rupture, or
separation of the parts; and these two conditions give rise to
two general problems under the resistance of materials, the
former of which we shall call the problem of Erastic Resmsr-
ANCE; the latter, ULtiMaTE RESISTANCE, or ResistaNce To Rue-
TURE.

4. GENERAL PRINCIPLES OF ELASTIC RESISTANCES.—
To determine the laws of elasticity we must resort to experi-
ment. DBars or rods of different materials have been subjected
to different strains, and their effects carefully noted.

From such experiments, made on a great variety of materials,
and with apparatus which enabled the experimenter to observe
very minute changes, it has been found that, whatever be the
physical structure of the materials, whether fibrous or granular,
they possess certain general properties, among which are the
following :— )

1st. That all bodies are elastic, and within very small limits
they may be considered perfectly elastic ; <. e., if the particles
of a body be displaced any amount within these limits they
will, when the displacing force is removed, return to the same
position in the mass that .they occupied before the displace-
ment. This limit is called #ke limit of perfect elasticity.®

* Mr. Hodgkinson made some experiments to prove that all bodies are non-
elastic. (See Civil Eng. and Arch. Jour.,vol. vi., p. 354.) He found that the
limits of perfect elasticity were exceedingly small, and inferred that if our
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2d. The amount of displacement within the elastic limit is
directly proportional to the force which produces it. It follows
from this, that in any prismatic bar the force which produces
compression or extension, divided by the amount of extension
or compression, will be a constant quantity.

3d. If the displacement be carried a little beyond this limit
the particles will not return to their former position when the
displacing force is removed, but a part or all of the displace-
ment will be permanent. This Mr. Hodgkinson called a se?, a
term which is now used by all writers upon this subject.

4th. The amount of displacement is not exactly, but nearly,
proportional to the applied force considerably beyond the elas-
tic limit.

5th. Great strains, producing great sets, impair the elasticity.

J. COEFFICIENT (OR MODULUS*) OF ELASTICITY.
If a prismatic bar, whose section and length are
unity, be compressed or elongated any amount
within the elastic limit, the quotient obtained by
dividing the force which produces the displacement
. by the amount of compression or extension is called
the CoErricient oF Evasticrry. This we call Z
Let K = section of a prismatic bar (See Fig. 2),

%}3 [ = its length,

Fic. 2.

powers of observation were perfect in kind and infinite in degree, we should
find that no body was perfectly elastic even for the smallest amount of dis-
placement. And although more recent experiments have indicated the same
result in cast-iron, yet the most delicate experiments have failed to thoronghly
establish it. I have, therefore, accepted the principle of perfect elasticity,
which, for the purposes of this work, is practically, if not theoretically, cor-
rect. It does not appear from Mr. Hodgkinson’s report how soon the effect
was observed after the strain was removed. If he had allowed considerable
time the 8¢ might have disappeared, as it is evident that it takes time for the
displaced particles to return to their original position.

* The terms coefficient and modulus are used indiscriminately for the con-
stants which enter equations in the discussion of physical problems, and are
sometimes called physical constants. The modulus of elasticity, as used by most
writers on Analytical Mechanics, is the ratio of the force of restitution to
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and » = the elongation or compression caused by a force, P,
which is applied longitudinally. Then

_é)' = force on a unit of section, and
; = the eloligation or compression for a unit of length.
Hence, from the definition given above, we have
P r Pl
= g5 T 5 T= Jr csseessscctssece s 1
£ K | A @

From this equation £ may be easily found. It will here-
after be shown that the coeflicent is not exactly, but is nearly
the same for compression as for tension.

For values of £, see Appendix III,

6. PROOFS OF THE LAWS GIVEN IN ARTICLE FOUR.—
Article 5 has preceded these proofs, so as to show how the re-
sults of experiments may be reduced by equation’(1). The 1st
and 2d laws seem first to have been proved by S. Gravesend,
since which they have been confirmed by numerous experiment-
ers. One of the most extensive and reliable series of experi-
ments upon various substances for engineering purposes is given
in “The Report of Her Majesty’s Commissioners, made under
the direction of Mr. Eaton Hodgkinson.” The results of his
experiments are published in the Reports of the British Associ-
ation, and in the 5th volume of the Proceedings of the Manches-
ter Literary and Philosophical Society, from which extracts
have been made and to which we shall have occasion to refer.
The experiments were made not only to prove these laws but

- several others, principally relating to transverse strength. -

Barlow made many experiments, the results of which are

given in his valuable work on the “Strength of Materials.”

that of compression, It relates to the impact of bodies, and, as thus defined,
depends upon the set. But the coefficient of elasticity depends neither upon
impact nor set. Another term should therefore be used, or else a distinction
should be made between the terms coefficient and modulus, so shat the former
shall apply to small displacements, and the latter to the relative force of resti-
tution. For this reason I have used the former in this work, and avoided the
latter when applied to elasticity.
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The series of experiments on iron which had been commenced
and so ably conducted by Mr. Hodgkinson were continued by
Mr. Fairbairn. The latter confined his experiments mostly to
transverse strength, the results of which are given in his valu-
able work on “Cast and Wrought Iron.” A valuable set of
experiments has been made in France at “le Conservatoire des
Arts et Métiers.” *

In this country several very valuable sets of experiments have
been made, among the most important of which are the experi-
ments of the Sub-Committee of the Franklin Institute, the re-
sults of which are published in the 19th and 20th volumes of
the Journal of that Society, commencing on the 73d page of the
former volume. The experiments were made upon boiler iron,
but they developed many properties common to all wrought
iron. They were conducted with great care and scientifie skill.
The report gives a description of the testing machine; the
manner of determining its friction and elasticity ; the modifica-
tions for use in high temperature ; the manner of determining
the latent and specific heats of iron ; and the strength of differ-
ent metals under a variety of circumstances.

Another very valuable set of experiments was made by Cap-
tain T. J. Rodman and, Major W. Wade, upon * Metals for
Cannon, wnder the direction of the United States Ordnance
Department,” and published by order of the Secretary of War.

Numerous other experiments of a limited character have been
made, too many of which have been lost to science because they
were not reported to scientific journals, and many others were
of too rude a character to be very valnable

The results of these experiments will form the basis of ow
theories and analysis.

* See ‘ Morin’s Résistance des Matériauz,” p. 126,
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CHAPTER 1
TENSION.

7. ELASTIC RESISTANCE.—We will first consider the elas-
tic resistance due to tension, or, as it is sometimes called, a pull,
or elongating force. ‘

EXPERIMENTS ON WROUGHT IRON.

E.ipen'mmta for determining the total donyation} and permanent elongation pro
duced by different weights acting by extension on a tie of wrought iron of
the best quality, by Eaton Hodgkinson.

Elongation per metre of length.
Weight in Coefficient of
Kilogr e ﬁ q! Yot .A_em
oen ;l.e i Total. A, Permanent. per sqmi‘? !
Xil. M. Mill, Xil.
187.429 0.000082117 | .. ...... 22 824 500 000
874.930 0.000185261 | .. ...... 20 216 200 000
562.406 0.000283704 0.00254 19 824 100 000
749.456 0.000379467 0.0033894 19 704 000 000
937.430 0.000475113 0.0042398 19 729 909 000
1124.813 0.000570792 0.00508 19 706 000 000
1312.283 0.000865647 9.0067705 19 714 600 000
1499.720 0.000760311 0.0100879 | 19 320 300 000
1687.219 0.000873265 0.0330283 19 320 700 000
1874.645 0.001012911 0.0829955 18 398 100 000
2063.580 0.001283361 0.2616950 16 079 200 000
2249.627 0.002227205 e eee s e
2403.653 0.004287185 3.0709900 5 606 590 000
2624.564 0.009156490 8.4690700 2 866 380 000
0.009950970 8.5748700 ve s aas aes
2812.033 0.010492805 9.1023600 2 681 520 000
Repeated after 1 hour, 0.011750313 | ......... Ch eee bee ees
et oo 0.011858880 | ......... . .
¢ ¢ g o« 0.011933837 | ......... c eer oe .
e LA S 0.011942168 .
e “ § 0.011958835
6 woog 0.011967149
¢ LA 0.012027114
s “og o« 0.012027014
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EXPERIMENTS ON WROUGHT IRON.—Continued.

‘Weight 1n Elo pex o Coefficient of
per sq! elasticity
centimetre. per square metre,
P, Total. A Permanent. E.
KilL M. Mil. Kil.
Repeated after 9 hours. | 0.012027114 | ..... e eet sae aee
“ “o10 ¢ 0.012027114 .

2099.500 0.017888263 16.5146 1 676 620 000
! 2009.500 0.019478898 | ......... . e vee
eseravae 0.01984831 18.4212 te tee ses ane
T eeeeeees 0.02022008. 18.8886 te eee e wee
8186.978 0.02148590 19.7954 1 488 290 000
© eeeeeeas 0.02169401 e cee see ave
0.02170242 | .........
0.02170242 22.0119 Ce ess ses see
0.02477441 22.7087 1 362 020 000

0.02514184 e eee sae ae

0.02522512 e hee e e
0.03493542 1 019 580 000
0.03519357

0.03520190
8745. 3 S R

This table is given in French units because it was more con-
venient. *

S, THE RESUYLTS OF THESE EXPERIMENTS may be re-
presented graphically by taking, as in Fig. 3, the total elonga-
tions or the permanent elongations for abscissas and the weights
for ordinates.

* To reduce the French measures to English we have the following rela
tions:—
LINEAR MEASURE.

. 8.2808992 feet = 1 metre.
0.328089 feet = 1 centimetre.
0.0032808 feet = 1 millimetre.
0.0393696 in. = 1 millimetre.

‘WEIGHT.

2.20462 1bs. avoird. = 1 kilogramme.
1422,28 1bs. pr. sq. in. = 1 kilog. to the sq. millimetre.
0.00142228 Ibs. sq. in, =1 kilog. pr. sq. metre.

Hence to reduce the above quantities to English units, multiply the numbers
in the first column by 14.2228 to reduce them to pounds avoirdupois per square
inch; those in the second column by 8.28089 + to reduce them to feet; the
' t]nrd by 0.08936 + to reduce them to inches; and the fourth by 0. 00142238 to
reduce them to pounds per square inch,



TENBION. 9

‘When the construction is made on a large scale it makes the
results of the experiments very evident.

An examina- 300 —
tion of Fig. 8 L g0t %—Eﬁ ]
shows :— B ¢/

1st. That to a 1=
load of 1499.72 prd

. 2480
kil. pr. square
centimetre, the 2000
total elongations
are practically
proportional to 1200
the loads ;

2d. Thatwith-
in the same lim- 45y —_
its the perma-
nent elongations o™ o002 016 028 036
are nearly pro- - F. &
portional to the loads, and that they are exceedingly small ;

8d. That beyond the load of 14.997 kil. to 22.00 kil. per
square millimetre, the total and permanent elongations increase
very rapidly and more than proportional to the loads ;

4th. That near and beyond 22.49 kil. per square millimetre,
the total elongations become sensibly proportional to the loads,
but in a much greater ratio than that which corresponds to small
loads. For the loads near rupture the elongations are a little
inferior to that indicated by the new proportion.

5th. Beyond 14.99 kil. per square millimetre, the permanent
elongations increase much more rapidly than the total elonga-
tions. We also observe that the permanent elongations increase
with the duration of the load, although very slowly. The latter
property will be more particularly noticed hereafter.

6th. Finally, the values 3 of the loads per square metre to

the elongation per metre, and which is called the cosfficient of
elagticity, is sensibly constant when the elongations are nearly
proportional to the loads ; and that the mean value is
E = 19,816,440,000 kil. per square metre ;
= 28,283,000 Ibs. per square inch.
The first value of E, in the table, is much larger, and may
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have resulted from an erroneous measurement of the exceed-
ingly small total elongation. From the experiments made on
another bar, Hodgkinson found
E = 19,359,458,500 kil. per sq. metre ;
= 27,700,000 pounds pr. square inch ;
which is but little less than the preceding.

Mr. Hodgkinson infers from these experiments that the small-
est strains cause a permanent elongation. But Morin for-
cibly remarks ¥ that none of these experimenters appear to have
verified whether time, after the strains are removed, will not
cause the permanent elongations to disappear. Also that the
deflections of the machine cannot be wholly eliminated, and
hence appear to increase the true result. Inpractice such small
permanent elongations may be omitted.

The preceding example has, for a long time, been given to
show the law of relation between the applied force and the
total and permanent elongations ; but we should not expect to
find exactly the same results for all kinds of iron. Even wrought
iron has such a variety of qualities, depending upon the ore of
which it is made, and the process of manufacture, that it cannot
be expected that the above results will always be applicable to
it.  Only a wide range of experiments will determine how far
they may generally be relied upon.

It is found, however, that the ceNERAL RESULTS of extension,
of set, of increased elongation with the duration of the stress
within certain limits, and of the increase of set with the in-
crease of load, are true of all kinds of iron.

EXPERIMENTS UPON CAST IRON.

9. THE FOLLOWING EXPERIMENTS UPON CAST-IRON show
that the numerical relation between the applied force and the
extension is somewhat different from the preceding. The expe-
riments were made under the supervision of Captain T. J. Rod-
man :—+

¢ The speciinens had collars left on them at a distance of thirty-five inches

* Morin’s Résistance des Matériauz, p. 10. }

+ Ezperiments on Metals for Cannon, by Capt. T. J. Rodman, p. 157.

For a full description of the testing apparatus, with diagrams, see Major
Wade's Report on the Strength of Materials for Cannon, pp. 305-315. The
machine consists principally of a very rubstantial frame and levers resting on
knife edges. .
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apart, the space between the collars being accurately turned throughout to a
uniform diameter.

‘¢ The space between the collars was surrounded by a cast-iron sheath, eight-
tenths of an inch less in length than the distance between the collars ; it was
put on in halves and held in position by bands, and was of sufficient interior
diameter to move freely on the specimen.

““When in position, the lower end of the sheath rested on the lower collar
of the specimen, the space between its upper end and the upper collar being
supplied with and accurately measured by a graduated scale tapered 0.01 of an
inch to one inch.

‘“The upper end of the sheath was mounted with a vernier, and the scale
was graduated to the tenth of an inch.

¢ This afforded means of measuring the changes of distance between the
collars to the ten-thousandth part of an inch, and these readings divided by the
distance between the collars gave the extension per inch in length as recorded
in the following table :—

TABLE
Showing the extension and permanent set per iich in length caused by the under-

mentioned weights, per square inch of section, acting upon & solid cylinder 35

inches long and 1.366 inches diameter. (Cast at the West Point Foundry in

1857.)

Weight per Extension per inch of | Permanent set inch cient of
squ&::;h of leué)teh. in lengtlﬁer o Co:l{:‘sticxty.
P. A E.
1bs. in. in,
1,000 0.0000611 0 16,366.612
2,000 0.0000794 0. 25,189,168
3,000 0.0001089 0. ’ 27,548,209
4,000 0.0001771 0. 22,586,674
5.000 0.0002129 0. 23,489,901
6,000 0.0002700 0.0000014 22,222,222
7,000 0.0003328 0.0000029 21,033,653
8,000 0.0003986 0.0000043 20,070,245
9,000 0.0004557 0.0000071 19,749,835
10,000 0.0005100 0.0000109 19,607,843
11,000 0.0005500 0.0000157 * 20,000,000
12,000 0.0006414 0.0000257 18,693,486
13,000 0.0007100 0.0000300 - 18,309,859
14,000 0.0007700 0.0000357 18,181,181
15,000 0.0008557 0.0000477 17,529,507
16,000 0.0009243 0.0000529 17,310,397
17,000 0.0010014 0.0000643 16,977,231
18,000 0.0010900 0.0001014 16,537,614
19,000 0.0012271 0.0001471 15,483,660
20.000) 0.0013586 0.0002014 14,721,109
21,000 0.0015386 0.0002900 - 18,648,771
22,000 0.0017043 0.0002986 12,908,523
23,000 0.0019529 0.0005529 11,265,246
24,000 0.0022786 0.0007529 10,532,344
25,000 0.0026037 0.0010843 9,601,720
26,000 0.0032186 8,078,046
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10. FIGURE 4 IS A GRAPHICAL REPRESENTATION OF
THE ABOVE TABLE, constructed in the same way as Figure 3.

Experiments were made upon many other pieces, from which
I have selected four, and called them A4, B, C, and D, a gra-
phical representation of which is shown in Figure 5. The right
hand lines represent extensions, the left hand sets.

UEEN
- 1]
P wyZani
[V [ T
/ IV i/
! //

A was from an 1mner specimen of a Fort Pitt gun, No. 335,
and the others from different cylinders which were cast for the
purpose of testing the iron.

From these we observe :—

1st. That for small elongations the ratio of the stresses to the
elongations is nearly constant.

2d. There does not appear to be a sudden change of the rate
of increase, as in Mr. Ilodgkinson’s example, but the ratio gra-
dually increases as the strains increase. ‘

3d. The sets at first are invisible, but they increase rapidly
as the strains approach’ the breaking limit.

It appears paradoxzical that the first and second experiments
in the preceding table should give a less coefficient than the
third, but the same result was observed in several cases.

11, THE FOLLOWING TABLES ARE THE RESULTS OF
SOME EXPERIMENTS MADE BY MER. HODGKINSON :—
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Direct longitudinal extension of round rods of cast irog, fifty feet long.

NAME OF IRON.

No. of
experiments,
Mean area of

section.

Weights per square inch laid on,
with their corresponding ex-

tensions and sets.

Weights. | Extension.
P, A,

Seta.

Mean breaking
weight per square
inch of seetion.
Mean ultimate
extension.

Low Moor, No. 2

ceesee| 21,058

Blaneavon Iron, No. 2..| 2 |1.0685

Gartsherrie Iron,

No. 2. 2 11.082

1ba.
2,117
6,352
10,586
14,821
2.096
6,289
10,482
13,627
2109
6,328
10,547
14,766

in.

0.0950
0.3115
0.5640
0.9147
0.0942
0.3085
0.5770
0.8370
0.0922
0.3117
0.5862
0.9452

in.
0.00345
0.0250
0.4425
0.12775
0.00268
0.01675
0-0575
0.11475
0.001 +
0.01450
0.04756
0.11352

F
=
oF
&

16,408

14,675(0.9325

16,951/1.167

In these experiments the ratio of the extensions is somewhat

greater than that of the weights.

The value of £, as computed

for the first weights which are given, and the corresponding
extensions, is a little more than 13,000,000 pounds per square

inch.

EEgsEL

Extension of cast-iron rods, ten feet long and one inch square, 3.%’ 8 E ‘I'I‘ §

it 18-

| ti53s)

Weights fixtenelons. Seta. = Au%EEL

1bs. in. in,
1053 77 .0090 .00022 117086 — 4
1580.656 .0137 .000545 115131 —

2167.564 .0186 .00107 113309 —ty
8161.31 .0287 .00175 110150 +537
4215.08 .0391 .00265 107803 +337
5262.86 .0500 .00372 106877 +733
632262 .0613 .00517 103142 +1ér
7376.89 L0734 .00664 100496 +1i7
8430.16 0869 .00844 98139 +its
9483 .94 .0995 .01062 95316 +137
10537.71 .1136 .01306 92762 +13T
11591 .48 .1283 .01609 90347 —zir
12646.25 .1448, .02097 87329 —T1d%
13699.83 .1668 . 82133 +$3
14793.20 .1859 .02410 79576 — 37
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Let P = the elongating force and
A, = the total elongation in inches due to P.
Then Hodgkinson found, from an examinstian of the table,
that the empirical formula

P = 1161175 — 2019052

represented the results more nearly than equation (1). This for-
mula reduced to an equivalent one for Z in inches (observing
that the bar was 10 feet long), becomes

2e Ae
T 7

Although this equation gives the elongations for a greater range
of strains than equation (1) for this particular case, yet the
law represented by it is more complicated, and hence would
make the discussions under it more difticult, without yielding
any corresponding advantage. It is the equation of a parabola
in which P is the abscissa and A, the ordinate.

We also see that when the elongations are very small, the
2

P
quantity -l—‘: will be very small, and the second term may be

P = 13,934,000 > — 2,907,432,000

omitted in comparison with the first, in which case it will be re-
duced to equation (1). The coeflicient in the first term is the
coeflicient of elasticity, hence it is nearly 14,000,000 lbs. for
extension.

MALLEABLE IRON.

12. ACCORDING TO BARLOW’S EXPERIMENTS malleable
iron may be elongated 14 of its length without endangering
its elasticity.* To ascertain this, the strains were removed
from time to time, and it was found that the index returned to
zero for all strains less than 9 or 10 tons. The mean extension -
per ton (of 2,240 1bs.) per square inch, for four experiments, was
0.00009565 of its original length. Hence the mean value of
the coeflicient of elasticity is

L__ 2240 o5 418,000 Ibs.
65

=== 0.000095

* Journal Frank Inst., vol. xvi., 2d Series, p. 126.




TENSION. 15

ELASTICITY OF WOOD.

13. EXPERIMENTS BY MESSRS. CHEVANDIER AND WRN-
xaELM.—The following are some of the results of the recent
experiments of Messrs. Chevandier and Wertheim on the resist-
ance of wood. These experimenters have drawn the following
principal conclusions:—

1. The density of wood appears to vary very little with age.

2. The coeflicient of elasticity diminishes, on the contrary, be-

_ yond a certain age ; it depends, likewise, upon the dry-

ness and the exposure of the soil to the sun in which the
trees have grown; thus the trees grown in the northern
exposures, north-eastern, north-western, and in dry soils,
have always so much the higher coeflicient as these two
conditions are united, whereas the trees grown in muddy
soils present lower coeflicients.

3. Age and exposure influence ¢ohesion.

4. The coeflicient of elasticity is affected by the soil in which
the tree grows.

5. Trees cut in full sap, and those cut before the sap, have not
presented any sensible differences in relation to elasticity.

6. The thickness of the woody layers of the wood appeared to
have some influence on the value of the coeflicient of
elasticity only for fir, which was greater as the layers were
thinner.

7. In wood there is not, properly speaking, any limit of elas-
ticity,-as every elongation produces a set.

It follows from this circumstance that there is no limit of
elasticity for the woods expenmented upon by Messrs. Chevan-
dier and Wertheim ; but, in order to make the results of their
experiments agree w1th_ those of their predecessors, the authors
have given for the value of the limit of elasticity the load under
which it produces only a very small permanent elongation ; the
limit which they indicate in the following table for loads, under
which the elasticity of wood commences to change, corresponds
to a permanent elongation of 0.00005 of its original length.



16 THE RESISTANCE OF MATERIALS,

TasLE coNTAINING THE MEAN REstrts oF THE EXPERIMENTS OF
Mgessrs. CHEVANDIER AND W ERTHEIM.

8. B g 2% | B
o458 |Eipy | 35| 34
%’ SE gi‘sa ) '.EE' 28

Species. ] "1 sEge _Eﬁ.u .=J§

A | dag, tggé" %zgg oY

EQ 5 ‘é"'-gu' - 3 3
8558 |5igna|sadE| At
Kilogr. Kilogr. Kilogr.
1261.9 | 3.188 | 7.93 | 2
1113.2 | 2.153 | 4.18 | Hd g
1085, 1.282 | 299 | FA'g
997.2 | 1.617 | 4.30 | & -2
980.4 | 2.817 | 8.57 | 82§
977.8 “ 649 | § .5
921.8| 2.349 | 5.66 | 528
564.1 | 1.833 | 248 | e ¥
1165.3 | 1.842 | 6.99 | S8
1163.8 | 1.139 | 6.16 | §3 4
11214 | 1.246 | 6.78 | 8T
1108.1 | 1.121 | 454 | €38
1075.9 | 1.085 | 7.20 | § &
1021.4 | 1.068 | 358 | o £3
517.2 | 1.007 | 1.97 |E&>S

14. ELASTICITY OF WOOD, TANGENTIALLY AND RADI-
ArLLY.—The same observers have also determined the coeflicient
of elasticity and the cohesion of wood in the direction of the
radius and in the direction of the tangent to the woody layers.

An examination of the following Table shows that the resist-
ance in the direction of the radius is always greater than the
resistance in the direction of the tangent to the woody layers;
the relation between the coefficients of elasticity in the two
cases varying nearly from 3 to 1.15, '
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Mzean Resvrts oF THE ExPERIMENTS oF MEssrs. CHEVANDIER
AND WERTHEIM.

IN THE DIRECTION OF THE TAN-
IN THE DIRECTION OF RADIUS. GENT TO THE LAYERS.
ohesion,

SPECIES. Coefficient of loa(zi,hper si]lm:; Coefficient of loa%‘:h;:i: ';Imag;
Elasticity, E, per|mill. metre, capa-lE‘n.sticity, E,_ per millimetre, capa-
square millime-|ble of producing square millime- ble of producing
tre. rupture. tre. rupture.

Kilogr. Kilogr. Kilogr, Kilogr.
Yoke Elm........... 208.4 1.007 103.4 0.608
Nycamore.. ........ . 134.9 0.522 80.5 0.610
Maple.............. 157.1 0.716 TR 0.371
Oak..... e N 188.3 0.582 129.8 0.406
Birch................ 81.1 0.823 155.2 1.063
Beech.. ............ 269.7 0.885 159.3 0.752
Ash................. 111.3 0.218 102.0 0.408
Elm...coooovvvnnnn. 121.6 0.345 63.4 0.366
Fir. ...l 94.5 0.220 34.1 0.297
Pine ........ [ 97.7 0.256 28.6 0.196
Locust............... 170.3 e 152.2 1.231

The highest coefficient of elasticity in this table is for beech, and this is less
than 400,000 pounds per square inch.

15. memark.— e value of £, which is used in practice, is
not the coeflicient of perfect ela.stlut) , but it is that value which
is nearly constant for small strains. In determining it, ho ac-
count is made of the set, If the total elongations were propor-
tional to the stresses which produce them, we would use the
value of % found by them, even if the permanent equalled the
total elongations. But in practice the permanent elongations
will be small compared with the total for small stresses.

APPLICATIONS

16. TO FIND THE ELONGATION ‘OF A PRISMATIC BAR
SUBJECTED TO A LONGITUDINAL STRAIN WHICH XS WITil-
IN THE ELASTIC LIMITS.

From (1) we have

Pl
= A5 st e e ecs st s s cscessacsann e 2
*=ER @)
which is the required formula. R
9 s E
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Also from (1) we have
A h
P =K .cccoivinniiinninns .o (8

Equations (1), (2),and (3) are equally applicable
to compressive strains, as will hereafter be shown.
- If in (3) we make K = 1and » = ! we shall have
P = E; hence, the coefficient of elasticity may be
defined to be a force which will elongate a bar whose
section 18 unity, to double its original length, pro-
vided the elasticity of the material does not change.
But there is no material, not even a perfectly elastic
body—as air and other gases—whose cocfficient of
elasticity will not change for a perceptible change of volume.
The material may not lose its elasticity, but equation (1) only
measures it for small displacements. To illustrate further, let
it be observed that, according to Mariotte’s law, the volumes of
a gas are inversely proportional to the compressive (or exten-
sive) forces ; double the force producing a compression to half
the volume ; four times the force, to one-fourth the volume, and
so on, the compressions being a fractional part of the original
volumne ; but in equation (2), A is a linear quantity, so that if
one pound produces an extension (or compression) of one inch,
two pounds would produce an extension of two inches, and
8O ON.

Fia. 6.

Ezramples.—1. If the coefficient of elasticity of iron be 25,000,000 1bs., what
must be the section of an iron bar 60 feet long, so that a weight of 5,000 lbe
shall elongate it 4 an inch. )

From (1) we obtain K= P{ which by substitution becomes

E\
_ 5,000.12 x 60
~ 25,000,000 x 3
2.. What weight will a brass wire sustain, whose diameter is 1 inch, coeffi-
cient of elasticity is 14,000,000 lbs., so as to elongate it g of its length ?
Ans, 13,744.5 lbs,

= 0.288 square inches,
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17.—REQUIRED THE ELONGATION (OR COMPRESSION) OF
A PRISMATIC BAR WHEN ITS WEIGHT IS CONSIDERED.

Let ¢ = the whole length of the bar before elon-
gation or compression,

@ = variable distance = A9, =
dx = bc = an element of length, 3
w = weight-of a unit of length of the bar, °
W = weight of the bar, and

P, = the weight sustained by the bar.
Then (! — #)w + P, = P = the strain on any I

section, as be.
Hen(,e, fxom equation (2), we have

Fie. 7.
A i dr = TR . (®
~ the total length will become,
‘ P + dwl .
I+ A= [1 * K? 2, 6))
It P o= 0= 2o L e total longation i
= = 57K = sEp OF the total elongation is one-

half of what it would be if a weight equal to the whole weight
of the bar were concentrated at the lower end.

Requirep THE EroxcaTion (or ComprEssion) oF A CoNE IN
A VErtICAL PosITION, CAUSED BY 118 0WN WEIGHT WHEN IT IS
SUSPENDED AT ITS BASE (OR RESTS ON ITs BASE).

Take the origin at the apex before
extension, Fig. 8, and

let X = any section,

K, = the upper section,

¢ = the length or altitude of
the cone,

@ = the length or altitude of
any portion of the cone, Fio. 6.
and .

8 = the weight of a unit of volume.

Then, because the bases of similar cones are as the squares

of their altitudes, X = K, 7.—
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The volume of the c;me whose altitude is @
z - o v
= = _ = 3K,
S Eio = [ K. s = 3K

and the weight of the same part

& (from equation (2)) A = 3

from which it appears that the total elongation is independent
of the transverse section, and varies as the square of the

length.

18, THE WORK OF ELONGATION.—If P be the force
which does the work, and « the space over which it works, then
the general expression for the work is

To apply this to the elongation of a prism, substitute P from
Eq. (3) in (6), and make dx = dA, and we have

A 3
EEN g — EEXN _3py.......(7)

U= 7 9

0
which is the same result that we would have found by suppos-
ing that 2 was put on byincrements, increasing the load gradu-
ally from zero to P.

Ezample.—If the coefficient of elasticity of wrought iron be 28,000,000 1bs.,
and is expanded 0.00000698 of its length for one degree F., how much work is
done upon a prismatic bar whose section is one inch, and length 30 feet, by a
change of 20 degrees of temperature ?

Walls of buildings which were sprung outward have been drawn into an erect
position by heating and cooling bars of iron. Several rods were passed through
the building, and extending from wall to wall, were drawn tight by means of
the nuts. Then a part of them were heated, thus elongating them, and the
nuts tightened ; after which they were allowed to cool, and the contraction
which resulted drew the walls together. Then the other rods were treated in
a similar manner, and so on alternately.
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19, VERTICAL OSCILLATIONS.—If a bar Aa, Fig. 9,
with a weight, P, suspended from its lower end, be pressed down
by the hand, or by an additional weight from & to &, and the addi- v
tional force be suddenly removed, the end of the bar on retnrning
will not stop at @, but will move to some point above, as ¢, a dis-
tance ac = ab. From a principle in Mechanics, viz., that the living
force equals twice the work, we are enabled to determine all the
circumstances of the oscillation when the weight of the bar is
neglected. The weight P elongates the bar so that its lower ex-
tremity is at @, at which point we will take the origin of co-or-
dinates.

Let A = ab = the elongation caused by the additional force,
& = ad = any variable distance from the origin,
o = the velocity at any point, as d, and
M = the mass of the weight P.
If the weight of the rod be very small compared with P, the vis viva is

My =Lo very nearly.
g EK
The work for an elongation equal to A, is by Eq. (7), — A3

The work for an elongation equal to 2, is by Eq. (7), Ezz"

21
P EK da? EK '
"'*}”’=W()"_d‘)’°r7:i;’=y ..P_l(p_m-z)=vq

P A @ v /P e o [H
t= EK ViEZS s _] )
g P—a gEK 440 -2V gEK

0

for half an oscillation; and the time for a whole oscillation is

P n .
T = IV/‘VE—_K:— ﬂ\/‘; PP ()

hence the oscillations will be isochronous,

It is evident that by applying and removing the force at regular intervals, the
amplitude of the oscillations may be increased and possibly produce rupture.
In this way the Broughton suspension bridge was broken. *

As a second example, take the case in which P is applied suddenly to the end
of the rod. It is evident that the total elongation will be greater than 1,—the
permanent elongation. For the fundamental equation we may use another

* Mr. E. Hodgkinson, in the 4th volume of the Manchester Philosophical
Transactions, gives the circumstances of the failure, from this cause, of the
suspension bridge at Broughton, near Manchester, England. And M. Navier, in
his theory of suspension bridges (Ponts Suspendus, Paris, 1823), states that
the duration of the oscillation of chain bridges may be nearly six seconds.
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principle in Mechanics, which might have been used in the preceding problem,
viz., that the mass multiplied by the acceleration equals the resultant moving

force. The resisting force for an elongation 2 is 'EI—E:Z (See Eq. (3) ), and the

moving force is P, whose mass = :;; hence

dz EK
u%—p_EK,
dz* EK
. b= p (2Pz—-—z’) =0

vz
. — - P 1 . - FKz
..t—-\/ / \/2PQ_EK"’ ;I—E—Rvemn B

Kz=1209= /71-,
z2=2,v=0,
=0, 0=0.
Hence, the amplitude is twice the permanent elongation. If 2 = 2/ we have

Pi i .
t=n \/g—E-K= b7 \/ 7 Investigntions.ofthiskindgiverisebotdm-

sion of the subject called Resiliance of Prisms.

The investigations are interesting, but the results are of little use beyond
those which have already been indicated. From the last problem we see thata
weight suddenly applied produces twice the strain that it would if applied
gradually.

As additional exercises for the student, I suggest the following : Suppose the
weight be applied with an initial velocity. Suppose a weight P is attached to
one end, and the weight P' is placed suddenly upon it; or it falls upon it.
To find the velocity at any point in terms of ¢, — also 2 in terms of ¢.

If a weight W is suspended at the end, and another weight W, falls from a
height %, giving rise to & velocity o, we have for the common velocity of the

bodies after impact, if both are non-elastic, V= —WI l-’:-vW’ and the is viva of
1
both will be x
W'’ . K .
s — e
MV? = PR which equals i 2%, or twice the work,

Zhl
A= W)\/

This is only an approximate value, for the inertia of the wire is neglected.

20. VISCosITY OF SOLIDS.—Experiments show that the prin-
ciple of equal amplitudes, referred to in the preceding article, is
not realized in practice. This is more easily observed in trans-
verse vibrations. The amplitudes grow rapidly less from the
first vibration, and the diminution cannot be fully accounted for
by the external resistance of air. Professor Thompson of Eng-
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land has shown that there is an internal resistance which opposes
motion among the particles of a body, and is similar to that
resistance in fluids which opposes the movement of particles
among themselves. He therefore called it viscosity.* He
proved :—

1st. That there was a certain internal resistance which he
called Viscosity, and which is independent of the elastic pro-
perties of metals;

2d. That this force does not affect the co-efficient of elasti-

city.

The law between melecular friction and viscosity was not
discovered. )

The viscosity was always much increased at first by the in-
crease of weight, but it gradually decreased, and after a few
days became as small as if a lighter weight had been applied.
Only one experiment was made to determine the effect of con-
tinual vibration ; and in that the viscosity was very much in-
creased by daily vibrations for a month.

This latter fact, if firmly established, will prove to be highly
important ; for it shows that materials which are subjected to
constant vibrations, such as the materials of suspension bridges,
have within themselves the property of resisting more and more
strongly the tendency to elongate from vibration. Experiments
will be given hereafter which tend to confirm this fact, when
the vibrations are not too frequent or too severe.

But the true viscosity of solids has been fully proved by M.
Tresca, a French physicist, who showed that when solids are
subjected to a very great force, the amount of the force depend-
ing upon the nature of the material, that the particles in the
immmediate vicinity of pressure will flow over each other, so as to
resemble the flowing of molasses, or tar, or other viscons fluids.
By applying sufficient pressure solid bodies may be made to
Jlow through holes in other bodies. Thus, true viscosity

differs entirely in its character from the property recognized by( >

Professor Thompson.

* Cio. Eng. Jour., vol. 28, p. 322.

§
-
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RESISTANCE TO RUPTURE BY TENSION.

21. mMOoDULUS OF STRENGTH.—Many more experiments
have been made to determine the ultimate resistance to rupture
by tension than there have to determine the elastic resistance.
In the earlier experiments the former was chiefly sought, and
more recently all who experimented upon the latter also deter-
mined the former.

The force which is necessary to pull asunder a prismatic bar
whose section is one square inch, when acting in the direction
of the axis of the bar, is called the modulus of strength. This
we call 7. It expresses the fenacity of the material, and is
sometimes called the absolute strength and sometimes modwlus
of tenacity.

22, FORMULA FOR THE MODULUS OF STRENGTH; or the
Jorce necessary to break a prismatic bar, when acted upon by
a tensile strain.

Let K = the section of the bar in inches;

T = the modulus of tenacity ; and
P = the required force.

It is proved by experiment that the resistance is proportional

to the section ; hence

Pm TRt eiaiie e, ©)
P
:E— ............................... (10)

From (10) 7' may be found. In (10) if 2 is not the ultimate
resistance of the bar, then will 7" be the strain on a unit of see-
tion.

From (9) we have

which will give the section.
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The following are some of the values of 7" which have been
found from experiment by the aid of Equation (10).

Cohesive force or Tenacity
in Ibs. per square inch.

Ash (English). . coovvviiiiiiiniinaiae, 17,000

08k (Bnglish).....oeeunreeinannnnnnn.. 9,000 to 15,000
Pine (pitch). .o ovvveiiiee i, 10,500

Cast Iron*..........cooiiiiiiiiiia, 14,800 to 16,900
Cast Iron (Weisbach & Overman)......... 20,000
Wrought Iron . .........oooiiiiiiias, 50,000 to 65,000
Steel WAre. .. vooneenrsneeeeaannnns. 100,000 to 120,000
Bessemer Steel t.........ccoiiiiiia.. 120,000 to 129,000
Bessemer Steel ...l 72,000 to 101,000
Bars of Crucible Steel §.................. 70,000 to 134,000
Chrome Steel | ........covieiiei... 115,780 to 190,680

The most remarkable specimen of cast steel for tenacity
which is on record was manufactured in Pittsburgh, Pa. It
was tested at the Navy Yard at Washington, D. C., and was
found to sustain 242,000 lbs. to the square inch !

For other values see the Appendix.

3. A vertical prismatic bar s fixed at its upper end, and
a weight P, is suspended at the other ; what must be the upper
section at A, Fig. 7, 30 as to resist n-times all the weight below
it, the weight of the bar being considered ?

Let 3 = the weight of a unit of volume of the bar, and the
other notation as before.

Then KT = nP, + ndKL
nP,

o K = *]Tnﬁ‘ ............................ (12)
fn=1 K= _]_{—:F_l; and if /. = T, K = o, or no section
is possible, and 7 = —"]—1 is the corresponding length of the bar.

* Hodglinson, Bridges. Weale, sup., p. 5.

t Jour. Frank. Inst. Vol 84, p. 366. )

t Also Experiments by Wm. Fairbairn, Van Nostrand's Ec. En. Mag., Vo
1, p. 278. § Do. p. 1009.

| Report, Cat., J. B. Eads, C.E.

9 Am. R. B. Times (Boston), Yol. 20, p. 208.
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4. BAR OF UNIFOBRM STRENGTH. Suppose a bar is
Jixed at its upper extremity, Fig. 10, and a weight P, i3 sus-
pended at its lower extremity ; it i3 required to find the form
of the bar so that the horizontal sections shall be proportional
to the strains to which they are subjected—the weight of the
bar being considered. ,

Let & = weight of an unit of volume,
W = weight of the whole bar,
K, = % = the section at B (Eq. (11) ),
K, = the upper section,
K = variable section, and
&« = variable distance from B upwards.
Also let the sections be similar:

P, Then P = P, + )fK dr = strain on any
F1a. 10.  gection, as D €. But 7K is the ability to resist
this strain:
coP 48 f Kdx = TK. Differentiate this, and we have

dKde = TdK

J dK . . A
or -5 de = = which by integrating gives
%w:Nap logK + C.......... (12a)

But forz = 0, wehave K = K,.*. O = — Nap.log K, = —
Nap. log -13‘ Hence Eq. (12a) becomes : z = Nap. log %

T T
or, passing to exponentials, gives e — 5{_(
s
C K= EAC = %ﬂ“’ ................ (13)

Pl
For the upper section £ = K, ande =1.". K, = T’G?l 14

We also have

l P, .
W=13[ Kd =f %ﬂ“’@:ﬁ(ﬁ’ —1).....(15)
[} 0
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ExAMPLE. What must be the upper section of a wrought-iron shaft of uni-
form resistance 1,000 ft. long, so that it will safely sustain its own weight and
75,000 1bs.?

Let 7" = 10,000 Ibs., and

4 = 0.27 lbs. per cubic inch.

Then Eq. (11) gives K, = 7.5 s8q. inches, and
equation (14) gives K, = 10.37. )

In these formulas the form of section does not appear. For
tensile strains, the strength is practically independent of the
form, but not so for compression. When it yields by crushing,
the influence of form is quite perceptible, but not so much so
as when it yields by bending under a compressive strain. The
latter case will be considered under the head of flexure.

25. STRAINS IN A CLOSED CYLINDER.
If a closed cylinder is subjected to
an enternal pressure, it will tend to
burst it by tearing it open along a
rectilinear element, or by forcing the
head off from the cylinder, by rup-
turing it around the cylinder. First,
consider the latter case. The force
which tends to force the head off is
the total pressure upon the head,«and
the resisting section is the cylindrical
annulus.
Let D = the external diameter,
@ = the internal diameter,
p = the pressure per square inch, and
¢ = the thickness of the cylinder.
Then {» @’p = the pressure upon the head,
17 (" — d”) = the area of the cylindrical annulus,
ir T (D’ d’) = the resistance of the annulus and
=D-d
Hence, for ethbrmm,
irdp = =T (D —
or,@p =2Tt (D + d) = 4T + di)....... (16)

which solved gives £ = (——1 + \/ 1 +1]7,)a§Z ceeen(1)

Equation (16) may be written as follows :—
dp=4Tt(@ + d),

¥

H
B R T ByuuyRhy R

]
[
{
s
[}
1
[
[

%

Fia. 11,
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and as ¢ is generally small compared with d, we have dp =
47t nearly.

Next consider the resistance to longitudinal rupturing. Ae
it is equally liable to rupture along any rectilinear element,
suppose that the cylinder is divided by any plane which passes
through the axis. The normal pressure upon this plane is the
force which tends to rupture it, and for a unit of length is

pa

and the resisting force is
27%,
hence, for equilibrium,

The value of ¢ from (18) divided by that of ¢ from (16) gives

; ,and since D always exceeds d, this ratio is
greater than 2; hence there is more than twice the danger of
bursting a boiler longitudinally than there is of bursting it
around an annulus when the material is equally strong in both
directions.

The last equation was established by supposing that all the
cylindrical elements resisted equally, but in practice they do
not ; for, on account of the elasticity of the material, they will
be compressed in the direction of the radius, thus enlarging the
internal diameter more than the external, and causing a corre-
sponding increase of the tangential stress on the inner over the
outer elements. In a thick cylindrical annulus it is  necessary
to consider this modification.

To find the VARYING LAW OF TANGENTIAL STRAINS, let D and d
be the external and internal diameters before pressure, and
D+z and d+y the corresponding diameters after pressure.
Then, as a first approximation—which is near enough for prac-
tice—suppose that the volume of the annulus is not changed,
and we have

tr(D-d) =1 (D+e) — =@+ y)
or, Dz =dynearly........ciiiiiiiiiaa., (19)

the ratio

But the strain upon a cylindrical filament varies as its elon-
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gation divided by its length; see Eq. (8). Hence the strain on
the externar annulus, compared with the internal, is as

w(D+2)—xD | x(d+y)—=d 2, ¥
D to - wd B to 7
which combined with (19) gives

éa . 1 2
—D—,togorasd’toﬂ’,orasr to &&*

where 7 and 2 are radii of the annulus.

Hence, the strain varies inversely as the square of the dis-
tance from the axis of the cylinder.

To FIND THE TOTAL RESISTANCE, let

@ = the variable distance from the axis of the cylinder,

T = the modulus of ruptnre, or of strain, and

t = the thickness of the annulus.

Then 7dx is the strain on an element at a distance 7 from
the axis of the cylinder, or otherwise upon the inner surface of
the cylinder; and according to the principle above stated,

3
T ;-'—,dm is the strain on any element, and the total strain on both

sides is
R
27 LY
7 _2Tr+t” ............ ceeees (20)
If £ = 7, this becomes
Tt

which compared. with Eq. (18) shows that when the thickness
equals the radius, the resistance is only half what it would
be if the material were non-elastic. In (20) if ¢ is small com-
pared with », it becomes 2 7% mearly, which is the same as
equation (18).

If the ends of the cylinder are capped with hemispheres, the
stress npon an elementary annulus at the inner surface is
2w Trdx* Proceeding as before, and we find that the total

* T. J. Rodman says the resistance on any elementary annulusis T-2zdx (* Exp.
on Metal for Cannon,” p. 44) ; but it appears to me that. to make his expression
correct, 7' must be the modulus at any element; considered, and hence variable,
whereas it should be constant. The strain on any elementry annulus whose



30 THE RESISTANCE OF MATERIALS.

stress necessary to force the hemispherical heads off is
7"t
T (@)

which is also the stress necessary to force asunder a sphere by
internal pressure, when the elasticity is considered.

If cylinders are formed by riveting together plates of iron,
their strength will be much impaired along the riveted section.
The condition-of the riveted joint will doubtless have much
more to do with the strength than the compressibility of the
material, and will hereafter be considered.

The preceding principles are especially applicable to homo-
geneous metals, where the thickness is considerable, such as can-
nons and spherical shells.

26. RESISTANOE OF GLASS GLOBES TO INTERNAL PRES«
SURE.

- _EXPERIMENTS OF WILLIAM FAIRBAIRN.

. .| Bursting pres- | Bursting pres-
Descripti f the glass. Diamoter in Thickness in in 1bs sure in Ibs. per
escription o ° g inches. inches., m‘;l‘;;‘g:r squ:.:ect li:::t.. of
4.0x3.98 0.024 84 3504
Flint-glass . .... eees.| 4.0x38.98 0.0256 93 8720
’ 4 0.038 150 8947
4.5%x4.55 0.056 280 5625
6 0.059 152 3864
Mean......... ..4132
4.95%x5.0 0.022 90 5118
Green-glass..........| 4.95x5.0 0.020 85 5312
4.0 x4.05 0.018 84 4666
4.0 x4.03 0.016 82 5126

Mean...coo0uuee 5054

distance is  from the centre of the sphere, is T2rrda:,i= 2,:1"1'%; and the
total resistance is the integral of this expression between the limits of 7 and
r+it
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4.2 x4.35 0.025 120 5040

Crown-glass......... 4.05x4.2 0.021 126 6000
5.9 x5.8 0.016 69 6350

6.0 x6.8 0.020 86 6450

Mean,ocvvevnen. 5960

The following table exhibits the tensile strength of eylindrical
glass bars according to the experiments of Mr. Fairbairn : —

. Area of specimen in | Breaking weight in | Tenacity per square
Description of the glass. inches. 1bs, inch.

: 0.255 583 2286
Annealed ﬂmt-glass. . { 0.196 254 2540
Green-glass. .......... 0.220 639 2896
Crown-glass .......... 0.229 583 2546

As might have been anticipated, the tenacity of bars is much
less than globes ; for it is difficult to make a longitudinal strain
without causing a transverse strain, and the latter would have a
very serious effect : it is also probable that the outer portion of
the annealed glass is stronger than the inner, and there is a
larger amount of surface compared with the section, in globes
than in cylinders.

. RIVETED PLATES,

27. RIVETED PLATES are used in the construction of boil-
ers, roofs, bridges, ships, and other frames. It is desirable to
know the best conditions for riveting, and the strength of riveted
plates compared with the golid section of the same plates. The
common way of riveting is to punch holes through both plates,
into which red-hot bolts or rivets are placed, and headed down
whilehot. The process of punching strains, and hence weakens,
the material. A better way is to bore the holes in the plates,
and then rivet as before. The holes in the separate plates
should be exactly opposite each other, so that there will be no "
side strain on the plates caused by driving the rivets home, and
to secure the best effects of the rivets themselves. They are

- sometimes placed in single and sometimes in double rows,
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and experiment shows that the latter possesses great advantage
over the former. Experiments have been made upon plates of

. @ 0

KX

F1a. 12,

the form shown in Fig. 12, both with lap and butt-joints, and
with single and double rows of rivets.*

Table showing the Strength of Single and Double Riveted Plates.

Strength of single-riveted joints|Strength of double-riveted jointa

Cohesive strength of the plates| of equal section to the plates.| of eqnal section to the plates,
in 1bs. per square inch. taken through the line of riv-| taken through the line of riv-
T. ets. Breaking weight in lbs.| ets, Breaking weight in lba.
per square inch, per square inch.
57,724 45,743 52.352
61,579 36,606 48,821
58,322 43,141 58,286
50,983 43515 54,504
51,130 40,249 53,87
49,281 44,715 53.879
Mean. .54,836 42,328 53,635

It will be observed that in double-riveting there is but little
loss of strength, while there is considerable loss in single-rivet-
ing. In the preceding experiments the solid section of the

plates, taken through the centre of the rivet-holes, was used ;-

bnt, as Fairbairn justly remarks, we must deduct 30 per cent.
for metal actually punched out to receive the rivets. But as
only a few rivets came within the limits of the experiments,
and as an extensive combination of rivets must resist more

* London Phil. Transactions, part 2d, 1850, p. 677.
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effectually, and as something will be gained by the friction
between the plates, it seems evident that we may use more than
60 per cent. of the strength of riveted plates as indicated above.
Fairbairn says we may use the following proportions :—

Strength of plates........coovivviiiiiiiiiinians 100
Strength of double-riveted plates............... 70
Strength of single-riveted plates................ 56

28, STRENGTH OF DRILLED AND PUNCHED BOILER
PLATES.—A committee of the Railway Master Mechanics’
Association for 1872 reported the following results of some ex-
periments :—

Three pieces of 5 inch boiler plate, 1# inch wide, were torn
in two by hydraulic pressure.

No. 1 broke under a strain of. . .......... 32,228 1bs.
No. 2 broke under a strain of. ... ........32,228 lbs.
No. 38 broke under a strain of. .. ......... 33,600 Ibs.

The average breaking strain being....32,685 lbs.

Three pieces of % x 1} inch plate were punched, with a single
§ inch hole in each piece. They were then subjected to a ten-
sile strain, with the following result :—

No. 1 broke under a pressure of.......... 13,371 1bes.
No. 2 broke under a pressure of.......... 18,371 1bs.
No. 3 broke under a pressure of.......... 13,314 1bs.

‘The average being . ................ 13,352 1bs.

Three pieces of % x 1§ inch plate were drilled, with a single
& inch hole in each piece. '

No. 1 broke under a pressure of.......... 17,828 1bs.
No. 2 broke under a pressure of .......... 17;485 1bs.
No. 3 broke under a pressure of.......... 17,622 1bs.

" The average being......... e 17,645 lbs.

The average strength of the drilled plate being 4,163 lbs.
greater than that of the punched plate.

Great care was taken to dress the pieces to the sizes given
after they were punched or drilled. '

The following comparative tests were then made with
punched and drilled plates réveted.

Rix pieces 1% inch wide, and cnt from the same sheet as the-
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foregoing, were punched and riveted together in pairs with the
best § inch rivets, one rivet to each pair, and were subjected to
a tensile strain, with the following resnlt:—
No. 1 broke in centre line of hole under. ..17,828 Ibs.
No. 2 broke in centre line of hole under...17,5823 1bs.
No. 3 broke in centre line of hole under...17,143 1bs.
The average breaking strain being....17,599 lbs.

Six pieces, duplicates of those last mentioned, were drilled

and riveted together in pairs, one § inch rivet to each pair.
No. 1 sheared the rivet under pressure of . . 17,143 lbs.

No. 2 sheared the rivet under pressure of..16,457 lbs.

No. 3 sheared the rivet under pressnre of. .15,428 lbs.
The average shearing strain being. ...16,342 Ibs.

In the last set of experiments the strength of the plates was
not determined, since the rivets broke by shearing before the
plates broke. It is to be regretted that the size of the rivets
was not increased sufliciently to canse the plates to break and
thus secure a good comparative test. It is evident, howerver,
that drilled holes cause the rivets to be sheared more easily than
punched ones.

29. FAIRBAIRN'S RULE FOR THE SIZE AND DISTRIBU-
TION OF RIVETS.—The best size of the rivets, the distance be-
tween them, and the proper amount of lap of the plates, can be
determined only by long experience, aided by experiments.
Fairbairn gives the following table as the results of his infor-
mation upon this important subject, to make the joint steam or
water tight :—

Table showing the strongest Forms and best Proportions of Riveted Joints, as
deduced from Ezxperiments and actual Practice. (*‘Useful Information for
Engincers,” 1st Series, p. 283.)

Thickness of | Diameter of | Tengthof |. Dtsttfmce of | Quantity of ]Q“fmggz‘;’lﬁ_
plates, in the Rivets, in jrivets from the :;t:et: (;?)'3_ ('el"l; _lap in single- r?‘lr)e]t'e‘ 4 joints,
mc;hes. mc;xes. head, u: inches. inches, = oints l;l inches. 1n inches,
. . . a. - c.
¥ to % 2t 4} ¢t 6t 6t i0t
£ o 13 5t “
£ o 13 . "5 i ¢ 8} t
& to 13 1} “ 4t 4l ¢ 64
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30.—STRENGTH OF IRON IN DIFFERENT DIRECTIONS
OF THE ROLLED SHEET.*

In obtaining specimens for these experiments, care was gene-
rally taken to have them cut in different directions of the roll-
ing, longitudinally and transversely, and in some cases diag-
onally, to that direction. The table will be found to indicate
the direction of slitting in each case, and the comparison
contained in the table is given to show what information the
inquiry has elicited.

The comparison is made principally on the minimum strength
of each bar, being that which can alone be relied on in practice;
for if the strength of the weakest point in a boiler be overcome,
it is obviously unimportant to know that other parts had greater
strength. 1n one case, however, two bars, one cut across the
direction of rolling, and the other longitudinally, were, after
being reduced to uniform size, broken up cold, with a view to
this question. The result showed that the length-strip was 7%
per cent. stronger than the one cut crosswise, considering the
tenacity of the latter equal to 100. Of the other sets, embra-
cing about 40 strips cut in each direction, it appears that some
kinds of Doiler iron manifest much greater inequality in the
two directions than others. It is in certain cases not much over
one per cent., and in others exceeds twenty, and as a mean of
the whole series it may be stated to amounnt to six per cent. of
the strength of the cross-cut bars. The number of trials on
those cut diagonally is not perhaps sufficiently great to warrant
a general deduction ; but, so far as they go, they certainly indi-
cate that the strength in this direction is less than either of the
others.

Had we compared the mean instead of the least strength of
bars as given in the table, the result would not have differed
materially in regard to the relative strength in the respective
directions.

The boiler-iron manufactured by Messrs. E. H. & P. Ellicott,
which was tried in all these modes of preparation of specimens,
gave the following results:— .

1. When tried at oréginal sections, seven experiments on
length-sheet specimens gave a mean strength of 55285 lbs. per

* Jour. of the Frank. Inst., Vol. 20, 2d series, p. 94. 1837,
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square inch, the lowest being 44399 1bs., and the highest 59307
Ibs. Fourteen experiments on cross-sheet specimens gave a
mean of 53896 1bs., the lowest result being 50212 1bs., the high-
est 58839 Ibs.; and six experiments on strips cut diagonally
from the sheet exhibited a strength of 53350 Ibs., of which the
lowest was 51134 1bs., and the highest 58773 1bs.

2. When tried by filing notches on the edges of the strips, to
remove the weakening effect of the shears, the length-sheet bars
gave, at fourteen fractures, a mean strength of 63946 lbs., vary-
ing between 56346 1bs. and 78000 lbs. per square inch. The
cross-sheet specimens tried after this mode of preparation ex-
hibited, at three trials, a mean strength of 60236 lbs., varying -
from 55222 1bs. to 65143 lbs. ; and the diagonal strips, at four
trials, gave a mean result of 53925 lbs., the greatest difference
being between 51428 lbs. and 56632 1bs. per square inch.

3. Of strips reduced to uniform size by filing, four compar-
able experiments on those cut lengthwise of the sheet gave a
mean strength of 63947 lbs., of which the highest was 67378
Ibs., and the lowest 60594 lbs.

From the foregoing statements it appears that by filing in
notches and filing to uniformity, we obtain results 63946 lbs.
and 63947 lbs. for the strength of strips cut lengthwise, differing
from each other by only asingle lb. to the square inch, and
that by,.these two modes of preparation the cross-sheet speci-
mens gave respectively 60236 lbs. and 60176 Ibs., differing by
only 60 lbs. to the square inch. This seems to prove that by
both methods of preparing the specimens the accidental weak-
ening effect of slitting had been removed by separating all that
portion of the metal on which it had been exerted. Hence we
may infer that the differences between length-sheet and cross-
sheet specimens are really and truly ascribable to a difference of
texture in the two directions, which will be seen to amount, in
the case of filing in notches, to 6.15 per cent., and in that of
filing to uniformity, to 6.26 per cent. of strength of crosssheet
specimens. : ‘
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Table of the comparative view of the Strength of Specimens of ten different sorts of
Boiter and one of Bar Iron, in thelongitudinal, transverse, and diagonal direc-
tion of the rolling, as deduced from the least strength of each specimen, and the
average mirimum of each sort of Iron, in each direction in which it was tried,

g EE 2 g 24 23 2
"E_ s ) : k<) ;‘;’ I _g 3 s 3 = g g §
s =3 £ gy £3 5 &°
£ =g g &8 g . 4 <
wd ££8 1 e £28 | €2, | £5.
X EE K 5| EES | EEE | 28
S a82 5E3 g £ 583 558
2 58977 125 57182 | Tilted;
3 53828 130 | rilted. | 57789
4 47167 133 do. 53176
6 52280 135 do. 47738
8 50103 137 do. 50358
Mean. 53324 51191 Mean. | 57182 | 55882 | 49048
42 51653 Puddled. 142 44399
43 44102 do. 143 53135
4 53836 146 60594
46 59262 Hd pla.* 148 52468
48 59418 do 149 52228
49 57565 do 150 56869
51 H'd pla. 59656 151 53811
53 H'd pla. 56062 152 56073
56 Puddled. 57926 154 51134
58 do. 50570 157 52102
59 48308 Puddled 160 53862
60 58648 do 162 50212
61 52669 do. 164 56346
62 57612 do 167 56682
64 Puddled. 45392 169 54361
65 do. 51255 1n 55612
68 57929 H'd pla. 174 51425
70 47638 do
el H'd pla. 54634 Mean. | 54253 | 53646 | 52568
73 do. 52657
74 do. 49351
Mean. 54074 53049 226 49053
227 53699
228 40643
229 46473
230 49368
Mean. | 49368 | 47647

The specimens from 42 to 74 were partly puddled iron, and

partly Juniata blooms, Lammered and rolled into plate.

The

* Hammered and rolled into plates,
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length and cross-sheet specimens of these two kinds must be
compared separately.

All the experiments on No. 228 (cross) and 230 (length) were
made at ordinary temperatures with a view to this comparison.

31.—TENSILE STRENGTH OF AMERICAN BOILER IRON,
as determined by Mr. F. B. Stevens at the Camden and Amboy
R. R. repair shops, New Jersey, by sixteen experiments upon
high grade American boiler plate, gave the following results :—
Average breaking weight, Ibs. per square inch......54,123
Highest breaking weight, lbs. per square inch......57,012
Lowest breaking weight, 1bs. per square inch.......51,813
Variation in per centum of highest................ 9.1

32.—TENSILE STRENGTH OF WROUGHT IRON AT VARI-
OUS TEMPERATURES,

Mr. Fairbairn has made experiments upon rolled plates of
iron, and rods of rivet iron, at various temperatures. The for-
mer were broken in the direction of the fibre and across it.
The specimen when subjected to experiment was surrounded
with a vessel into which freezing mixtures were placed to pro-
duce the lower temperatures, and oil heated by a fire under-
neath to produce the high temperatures. The experiments
were made upon Staffordshire plates, which are inferior to
several other kinds in common use. The following table (A),
gives a summary of these results.

The mean values given in the sixth column of this Table
exhibit a remarkable degree of uniformity in strength for all
tenperatures, from 60 degrees to 395 degrees. The single ex-
ample at 0 degrees gives a higher value than the mean of the
others, but not higher than for some of the specimens at higher
temperatnres. At red heat the iron is very much weakened.
This fact should be noticed in determining the strength of
boiler-flues, as they are often subjected to intense heat when not
covered with water. :

The experiments upon rivet iron were made with the same
machine, and in the same manner, the results of which are
shown in the following table (B).
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Table A—Showing the Resistance of Staffordshire Plates at different Tempera-

tures.
A s | 3|
£ : i, ¥ S, <E
£l 2 5 24| kg £iy | memwm
- N g.ﬂ £ ﬁ g S

I | 25 f g | B
z & & . & g 577

1 0° 0.6868 33,660 49,009 49,009 With,

2 60 0.7825 31,980 40,357 l Across,

38 60 0.6400 27,780 43,406 44,498 Across.

4 60 0.6368 | 81,980 | 50,219 | With,

5 110 0.6633 29,460 44,160 Across.*

6 112 0.6800 28,620 42,088 42,201 ‘With,

7 120 0.8128 37,020 40,625 With.

8 212 0.8008 31,980 39,935 ‘With.

9 212 0.6633 | 30,300 | 45.680 | 45,005 Across,
10 212 0.6800 33,660 49,500 With,
11 270 0.6432 28,620 44,020 44 020 ‘With.,
12 340 0.6400 31,980 49,968 46.018 With.¢
13 340 0.6800 28,620 42,088 } i Across. .
14 395 0.6666 30,720 46,086 46,086 ‘With.
15 [Scarcelyred| 0.6200 23.520 88,032 |} 34,979 Across.
16 {Dull red 0.6076 | 18540 | 80512 |§34%™ § horosay

Table B—S8howing the Resuits of Erperiments
Temperatures.

on Rivet Iron at differert

= 8 & =

g - 22 £8

£ g B 2 2g

£ 4 g 54| Ee
§‘ < ] Ea g e
= = g g g g;' -t
o 3, =] = -~
| 5 £ £ frg | 33%
P2 = @ & @ ~= H3=
17 —30° 0.2485 15,715 63,239 63,239
18 +60 0.2485 15,400 61971 |} o g1
19 60 | ...... 15,820 63,661 |f ™7
20 114+ L, 17,605 70.845 70,845
21 2 | ... 20,545 82,676

22 212 0.1963 14,560 74,153 79,271
23 212 0.2485 20,125 80,985

24 250 0.1903 16,135 82,174 82.636
25 27 0.2485 20,650 83,008 } g

26 310 0.1963 15,820 80,570 |1 o4 046
27 325 0.1963 17,185 87,522 |~

28 415 0.2485 20,335 81,880 || g3 g43
29 435 | ... . 21,385 86,056 |{ °

80 | Red heat. | ..., 8,065 36,076 85,000

Remarks,

Too low.
Too low.
Too low.

Too high.

* Too high ; fracture very uneven.
t Too low ; tore through the eye.
1 Too high ; the specimen broke with the first strain,
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From this Table we see that there is a gradual increase of
strength from 60 degrees to 325, where it appears to attain its
maximum. The increase is a very important amount, being
about 30 per cent.

It appears remarkable that the specimen at —30 degrees
is stronger than the mean of the two at 60 degrees; but nume-
rous experiments which have been made by “different persons
confirm this result, when the pleces are broken by a steady
strain.

Experiments made by M. Baudrimont gave the following
results :—*

Tenacity of Iron at 32° Fahr. 205 }Kil. per square

Tenacity of Iron at 212° Fahr. 191 Millimetre,

Tenacity of Iron at 392° Fahr. 210

in which we observe the same general results as in the preced-
ing Tables.

" But iron and steel will not resist shocks as eﬁectually at very
low temperatures as at moderate temperatures; as we shall
have occasion to notice more particularly hereafter.

Mr. Johnson, when in the employ of the Navy Department,
in 1844, made some experiments to determine the effects of
thermo-tension upon different kinds of iron.t Xe took two
bars of the same kind of iron, and of the same size, and broke
one while cold. " Ie then subjected the other to the same
tension when heated 400 degrees, after which the strain was
relieved, and the bar wag allowed to cool, and the permanent
elongation noted, after which it was broken by an additional
load. It will thus be seen that the experiments were not con-
ducted in the same way as those by Fairbairn. Table A, page
41, gives the results of his experiments.

LRemarks.—From the two former sets of experiments, p.
39, it appears that the strength of the iron was increased
by an increase of temperature at the time the bar was
broken, and by the latter that it was not only increased, but,
by being subjected to severe tension while at a high temper-
ature, the increased strength was not lost by cooling. It hardly
seems probable that this increased strength would be retained

* Jour. Frank Inst., Vol. 20, 3d series, p. 344.
t Senate Doc., No. 1, 28th Cong., 2d Sess., 18445, p. 639.
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indefinitely, and hence it would be important to know how long
it was after the piece was cooled before it was broken.
Tadble A—Results of Ezperiments on Thermo-Tension, at 400° Temperature.

\

3 2 I8 s | 22
8 | &g g8:8 F £
KIND OF IRON. s <24 Biet, | B o
= PR A 2 gf; °§ @ _E’U )
§ | %35 | g |sEsfl) v | Esg
. 32 % C] 3238
§ | 838 | § | EEEsf| § | ek
Tons, Tons. Inches. Per cent. | Per cent. | Per cent.
Tredegar, round...| 60 1.4 1.91 6.51 19:00 | 25.51
Tredegar, round...|- 60 7.0 1.91 (6.51) 0.00 | 26.51
Tredegar,square bar; 60 67.2 1.69 6.77 12.00 | 18.77
Tredegar,r'nd, No.3| 58 68.4 1.15 5.263 | 17.93 | 23.19
Salisbury, round ..| 105.87 | 121.0 3.59 3.73 14.64 | 18.37
Mean. .. .ouveevreenarnnenns 5.75 | 16.64 | 22.40

These results are confirmed by the experiments of the com-
mittee of the Franklin Institute, as shown by the following
Table.—See Journal of the Franklin Institute, Vol. 20, 3d

Series, p. 22.

ABSTRACT OF TABLE

Of the comparative view of the Influence of Iligh Temperatures on the strength of
Tron, as exhibited by 13 experiments on 47 different specimens of that metal at
46 different temperaturss, from 212° to 1817° Fahr., compared with the
strength of each bar when tried at ordinary temperatures, the number of
experiments at the latter being 163,

No. of the experi- Temperature observed | Strength at ordinary | Strength at the tem-
ment. at moment of fracture. iemperature. perature observed.

1 212° 56736 67939

2 214 53176 61161

3 894 68356 71896

9 440 49782 59085
10 520 54934 58451
15 5p4 54372 61680
20 568 67211 76763
25 6574 76071 65387
40 22 57133 54441
45 824 59219 55802
50 1037 58992 37764
58 1245 54758 20703
59 1317 54758 18913
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LRemark.—According to these experigents, as shown in the
fourth column, the strength increases with the temperature to
394 degrees, when it attains its maximum ; although in some
cases the strength was increased by increasing the temperature
to 568 degrees. By comparmg the third and fourth columns
we see that the strength is greater for all degrees from 212° to
574° than it is at ordinary temperatures, but above 571 it
is weaker. The experiments on Salisbury iron showed that the
maximum tenacity was 15.17 per cent. greater than their mean
strength when tried cold. The committee above referred to
determined the maximum strength of about half the specimens
used in the preceding Table by actual experiment, and calculated
it for the others; and from the results derived the following
emplrlual formula for the diminution in strength below the
maximum for high degrees of heat :—

= ¢ (0 — 80)"
in which D isthe diminution after it has passed the maximum,

0 the temperature Fahrenheit, and
¢ a constant.

The value of the constant in empirical formulas is not strictly a
constanit, but is the mean of several values which are considered
as constant. The value of the constant is found by substitut-
ing known values for all the other quantities in the equation.

This formula appears to be sufficiently exact for all tempera-
tures between 520° and 1317°.

33.—TENSILE STRENGTH OF OTHER METALS AT DIF-
FERENT TEMPERATURES.—Experiments made by M. Bau-
drimont* showed that for all the following named metals the
strength diminished as the temperature was increased; the
results of which are given in Table A, page 43.

34.—EFFECT OF SEVERE STRAINS UPON THE ULTIMATE
TENACITY OF IRON RoDS. —Thomas Loyd, Esq., of England,
took 20 pieces of 1§ S.C. ¢y bar iron, each 10 feet long, which.
were cut from the middle of as many rods. Each piece was cut
into two parts of 5 feet each, and marked with the same letter.
Those marked A, B, C, &c., were first broken, so as to get the -
average breaking strain. Those marked A2, B2, &c., were

* Jour. Frank. Inst., Vol. 20, 3d Series, p. 344, 1850.
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subjected to the constant action of three-fourths the breaking
weight, previously found, for five minutes. The load was then
removed, and the rods afterwards broken. The results are
given in Table (B).

Table (A)—Of the Mean Values of the Tenacity of the principal Maileable Metals
at the temperature of 32°, 212° and 392° Fahrenlheit.

Tenacity per square
Name of the Metal. Millim. per cross section,
0° 212° 392°
Gold.......coovvviiiinann. 18.400 15.224 12.878
Platina. ... .....ocoiieeens 22.625 19.284 17.277
Copper. ....cocveiiiiniennn. 25,100 21.878 18.215
Silver. ....coooiveiiiiiin. 28.324 23.206 18.577
Palladium.................. 306.481 82.484 R7.077

Table B.—Results of the Lxperiments.*

FIRST. SECOND,
Mark on the bars. Bre&l;i:g( “;f;i};t n Mark. Breakmt% l:;elght in
A 33.75 A2 B 33.75
B 30.00 B2 33.00
C 33.25 Cc2 83 95
D 32.75 D2 32.25
B 32.50 E 2 32 .50
F 33.25 F 2 83.00
G 82.75 G2 33.00
H 33.25 H?2 33.50
I 3.50 I2 32 75
J 83.50 J2 33.95
K 82 25 K2 32.50
L 32.25 L2 81.50
M 30.25 M2 32.75
N 34.25 N 2 34.00
0o 81.75 02 32.50
P 29.75 P2 31.00
Q 83.50 Q2 33.75
R 83.75: R 2. 33.75
S 83.00 s2 33.25
T 82.25 T2 31.00
Mean.......... 32.57 32.81

* Fairbairn, Useful Tnformation for Engineers, First Series, p. 313,
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‘We here see that & strain of 25 tons, or three-fourths the
breaking weight, did not weaken the bar.

These experiments indicate thata frame may be subjected to
a severe strain of three-fourths of its strength for a very short
time without endangering its ultimate strength.

235. EFFECT oF REPEATED RUPTURE.—The following
experiments were made at Woolwich Dockyard, England. The
same bar was subjected to three or fonr successive ruptures by
tensile strains. They show the remarkable fact that while great
strains impair the elasticity, as shown by Ilodgkinson, yet they
do not appear to diminish the ultimate tenacity.

Tabie showsng the effect of repeated Fracture on Iron Bars.

First breakage. |Second breakage.| Third breakage. |Fourth breakage. | oot
sectional
area of

Mark, Stretch Stretch Stretch Stretch |1.37 sar.
Tons. | jnpy | Tons |5, 3¢ [ Toms. | y, g | Tons |5 "1=" linchesto
inches. inches. inches. inches. | the fol-
lowing.
In, In. In.
A 83.76 | 0.91% 5.50 ([ 0.200
B 33.75 | 0.9%0 | £5.2%5 | 0.225 | 87.00 1.00 38.75 1.2%
E 32.60 | 0.9250 | 34.%5 | 0.12
F 33.26 | 1.0500 | 3560 | 0.112 | 37.25 | 0.62 40.40 1.18
G 82.75 1 0.8500 | 35.00 | 0.12% | 87.50 40.41 1.%
H 33.75 [ 1.0625 | 36.2%5 | 0.187
I 33.50 | 0.8375 | 34.50 | 0.62 36.50 .50
J 33,60 | 0.920 | 36.00 | 0.025 | 36.95  1.12 41.75 1.2%
L 32.2% |Defect'e B0 0150 | 3775 41.00 | 0,31 1.%
M 80.25 |Defecte| 86.50 .62 87.% | 0 38. 0.06 1.2%5
Mean.......... 32.95 85.57 37.21 40.16 1.24
Mean persy.in.| 24.04 .93 .06 29.20 0.90

We thus see that while the section i reduced 10 per cent., the
strength is apparently increased over 20 per cent. It is not,
however, safe to infer that the strength is actually increased, -
for it is probable that it broke the first time at the weakest
point, and the next time at the next weakest point, and so on.

We also observe that the total elongations are not propor-
tional to the tensile strains, which is in accordance with the
results of other experiments,
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ANNEALED METAL—STRENGTH OF.

36. ANNEALING is a process of treating metals so as to make
them more ductile. To secure this, the metals are subjected to
a high heat and then allowed to cool slowly. Steel is softened
in this way, so that it inay be more easily worked. Campin*
says that stee/ should not be overheated for this purpose. Some
bury the heated steel in lime; some in cast-iron borings; and
some in saw-dust. He (Campin) says the best plan is to put
the steel into an iron box made for the purpose, and fill it with
dust-charcoal, and plug the ends up to keep the air fromn the
steel; then put the box and its contents into a fire until it is
heated thoroughly through, and the steel to a low red heat. It
is then removed from the fire, and the steel left in the box until
it is cold. Tools made of annealed steel will, in some cases,
last much longer than those made of unannealed steel.

But it appears from the following Table that it weakens < iron
to anneal it.

Tabie of the Strength of Wrought Iron Annealed at Different Temperatures.t

Strength at or- Strength at |Strength after|Ratio of di-

No. of com-|§inary temper-|Temperature at whichithe annealing annealing and|{minution of
Parisons. |ature before an-| annealing took place. | temperature. |  cooling. strength.

nealing.

1 57,133 . 10387° 37,764 55,678 0.025
5 53,774 1155 21,967 45,597 0 152
10 52,040 1245 20,703 35.843 .253
15 48,407 |Bright weldingheat.| ...... 38,676 .201
17 73,880 |Low welding heat. | ...... 54,578 275
18 76,086 |Bright weldingheat.| ...... 50,074 .349
19 89,162 |Low welding heat. | ...... 48,144 .460

7. THE STRENGTH OF IRON AND STEEL ALSO DEPENDS
largely upon the process of their manufacture and their treat-
ment afterwards. The strength of wrought iron depends upon
the ore of which it is made; the manner in which it is smelted
and puddled ; the temperature at which it is hammered, and the
amount of hammering which it receives in bringing it into

* Campin’s Mechanical Engineering.
t Jour. Frank. Inst., Vol. 20, 2d Series, p. 109, 1837.
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shape. The same remark applies to cast-steel. If the former
is hammered when it is comparatively cold, it will weaken it,
especially if the blows are heavy; but the latter, steel, may be
greatly damaged, or even rendered worthless by excessive heat,
and it is greatly improved by hammering when comparatively
cold. For the effect of tempering on the crushing strength, see
Article 59.

Different ores with essentially the same treatment produce
essentially different iron. Thus, the Lake Superior ores, near
Marquette, make a soft but very tough iron. Some of the
strongest specimens of iron which have been made in this
country were made from these ores, but it is found that the
elastic limit is passed with a much less strain compared with its
ultimate strength than many other irons. Manufacturers,
therefore, mix it with other ores so as to raise the elastic limit.
They often mix it with cheaper ores so as to cheapen the pro-
duct. They also mix it with cheaper ores so as to improve the
quality of the iron which would result if cheap ores only were
used. The mixing of ores from various mines is constantly
going on among manufacturers for various reasons. In this
way is secured irons of various grades of hardness, of elasticity,
of weldibility, and of tenacity.

There is even a greater difference in the quality of steel than
of wrought-iron. We have the well-known classes of blister
steel, crucible steel, Bessemer steel, and more recently of
chrome steel. Uniformity of product is more earnestly sought
in the manufacture of the several gradesof steel than of iron,
but when the saine iron is used by the same person, under the
same conditions, so far as he is able to control them, the expert
finds that there is a perceptible difference in the products.
Some steel takesa higher temper than others; some is softer;
some more brittle; some more tenacions; some is better to resist
crushing ; some better for sharp tools; some better to work into
masses than others; and it is often necessary for those who use .
steel to become acquainted with the grade which will best suit
their purpose.

Although experts may detect differences in steels of the same
general grade, yet manufacturers are able to produce steel
having given general characteristics so uniform that the com-
mon workman will not detect any difference in them.
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38. carome sTEEL. This is a peculiar product, which,
according to the older definitions of steel (depending upon a
certain per cent. of carbon), is not steel, but which possesses
many of the characteristics of steel. The manufacturers of it
claim that they can produce a steel of more uniform quality
of any particular grade, especially in large masses, than can be
produced by carbon steel.

The tensile strength exceeds considerably that of the best
crucible steel (excepting the remarkable specimen noted on p.
25). The experiments which were made upon twelve speci-
mens ‘of tool steel, which were cut from three bars, at the West
Point Foundry, gave the following results: —

Highest strength.. . ... ..198,910 Ibs. per square inch.
Lowest strength ........ 163,760 1bs. per square inch.
Average of all.......... 179,980 Ibs. per square inch.

The limit of elastic resistance is also high, being more than
half of its ultimate strength.*

39. PROLONGED FUSION OF CAST IRON.—Cast iron is
also subjected to great modifications of strength on account of
the manipulations to which it is or may be subjected in its
-manufacture and preparations for use. The strength in some
cases is greatly increased by keeping the metal in a fused state
gsome time before it is cast. Major Wade made experiments
upon several kinds of iron, all of which were increased in
strength with prolonged fusion (see Zep., p. 44), one example
of which is given in the following

Table showing the Effects of Prolonged Fusion.

Tensile Strength in

1bs. per gq. in.
Tron in fusion. .. .oeiernnniinnieenecneenennenas %+ hour 17,843
Tron in fusion. . . .ov.vevien it eiierienee e 1 hour 20,127
Tronin fusion.........oooiiiii it 14 hour 24,387
Tronin fusion. .....covveiiiiiiieiiiiiaiiiieens 2 hours 34,496

40. EFFECT OF REMELTING CAST IRON.—DBut the great-
est effect was produced by remelting. The density, tenacity,

* Report of Capt. J. B. Eads, C.E. This steel is used in the construction of
the noted St. Louis bridge.
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and transverse strength were all increased by it, within certain
limits, Ior instance, a specimen of No. 1 (Jrreenwood pig-iron
gave the following results. (Z2ep., p. 279.)

Table showing the Effects of Remeiting.

No. 1 Greenwood Iron. gravity. Tensile Strength.
Crude pig-iron .... ..c.iiiiiinineinaneencnansn 7,032 14,000
Crude remeltedonce. ........ccovviieenicnarnss 7,086 22,900
Cruderemelted twice ........ccvveerevnnnnnnans 7,198 30,229
Crude remelted three times..................... 7,301 35,786

But there is a point beyond which remeltings will weaken
the iron, Myr. Fairbairn made an experiment in which the
strength of the iron was increased for twelve remeltings, and
then the strength decreased to the eighteenth, where the experi-

ment terminated. In some cases no improvement is made by

remelting, but the iron is really weakened by the process; so
that it becomes necessary to determine the character of each
iron under the various conditions by actual experiment.

The laws which govern Greenwood iron were so thoroughly
determined that the results which will follow from any given
course of treatment may be predicted with much certainty
(Lep., p. 245).

By mixing grades Nos. 1, 2, and 3, and subjecting them to a
third fusion, one specimen was obtained whose density was
7,304, and whose tenacity was 45,970 Ibs., which is the strong-
est specimen of cast iron ever tested. ([Rep., p. 279.)

As a general result of these experxments Major Wade re-
marks (p. 243), “that the softest kinds of iron will endure a
greater number of meltings with advantage than the higher
grades. It appears that when iron is in its best condition for
casting into proof bars (that is, small bars for testing the metal)
of small bulk, it is then in a state which requires an additional

fusion to brlng it up to its best condition for casting into the

massive bulk of cannon,”

41. THE MANNER OF COOLING also affects the strength.
It was found that the tensile strength of large masses was
increased by slow cooling; while that of small pieces was
increased by rapid cooling. (Rep., p. 45.)
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49. THE MODULUS OF STRENGTH IS MODIFIED, we thus
see, by a great variety of circumstanees; and hence it is im-
possible to assign any arbitrary value to it for any material
that will be both safe and economical; but its value must be
determined, in any particular case, by direct experiment, or
something in regard to the quality of the material must be
known before its approximate value can be assumed.

43, SAFE LIMIT OF LOADING.—Structures should not be
strained so severely as to damage their elasticity. According
to Article 9, it appears that a weight suddenly applied will
- produce twice the elongation that it will if applied gradually
or by increments. Hence, structures which are subjected to
shocks by sudden applications of the load, should be so propor-
tioned as to resist more than double the load as a constant
dead-weight without straining it beyond the elastic limit.

This method of indicating the limits is perfectly rational ;.
but, unfortunately, the elastic limits have not been as closely
observed and as thoroughly determined by experimenters as
the limit of rupture. The latter was formerly considered
more important, and hence furnished the basis for determining
the safe limit of the load. Observations on good construetions
have led engineers to adopt the following values as mean re-
sults for permanent strains in bars:— -

For wood, 1 .
For Wl‘Ollﬂ‘ht iron, } torg of ?,-13 dll?:g rv::htl;::llll.ewould
For cast iron, Ftod I pare.

Further observations will be made upon this subject in the
latter part of the volume.
4



50 THE RESISTANCE OF MATERIALS.

CHAPTER IL
COMPRESSION.

ELASTIC RESISTANCE.

44, —coMPRESSION OF cAST IRoN.—Captain T.J. Rodman,
in his Report upon metals for cannon, page 163, has given the
results of experiments upon a piece of cast iron, which was
taken from the body of the same gun as was the specimen re-
ferred to on page 11 of this work, the results of which are given
in the following Table.

TABLE

Showing the Compression, permanent Set; and coefficient of Elasticity* of &
: solid Cylinder 10 inches long and 1.382 tnch diameter.

Wcigl}t per Compression ermanent set Coefficient of
~quare inch of inch of length. ibivt length, elasticity.

1,000 0.000090 0. 11,111,000
2,000 0.000170 0. 11,824,000
3,000 0.000255 0.000005 11,843,100
4,000 0.000320 0.000015 12,500,000
5,000 0.000385 0.000025 12,987,000
6,000 0.000455 0.000030 13,189,000
7,000 0.000505 0.000035 13,861,200
8,000 0.000575 0.000045 13,813,000
9.000 0.000645 0.000055 13,952,000
10,000 0.000705 0.0600070 14,196,000
15,000 0.001035 0.000170 14,492,000
20,000 0.001395 0.000300 14,337,000
25,000 0.001825 0.000495 13,687,900
30,000 0.002380 0.000820 12,602,300

‘We observe that the coeflicient of elasticity is much less for
the first strains than for those that follow. It thus appears that
this metal resists more strenuously after it has been somewhat
compressed than at first. The coeflicient of elasticity is con-

-* The author computed the coeflicients of elasticity from the other data of
‘the table.
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siderably less than for the corresponding piece, as given on page
11. The difference is very much greater than that found by
Mr. Hodgkinson in the specimens which he used in his experi-
ments. He took bars 10 feet long, and about an inch square,
and fitted them nicely in a groove so that they could not bend,
and occasionally, during the experiment, they were slightly
tapped to avoid adherence. The metal was the same kind a8
that used in the experiment recorded on page 13.

TABLE
Giving the Results of Experiments by Mr. Hodgkinson on bars of Cast Iron ten
© feet long.
Nﬁire:s?nr:hpglé Compression per inch of length. E ]‘:2} (‘:’: : ; t p:: %r;})ryl:; [‘)5:::: n?.:
sec;,l.on. Total. P nent. square inc‘h. I_,;i‘aggg:w
lhs. in. in. ’ 1bs.
2064.74 0.0001561 0.00000391 13,231,300 — ¥
4129 .49 0.0003240 0.00001882 12,764,910 — siv
6194.24 0.0004981 0.00003331 12,442,300 + 3%
8258.98 0.0006565 0.00005371 12,585,100 + 1T
10323.73 0.00082866 | 0.00007053 ' 12,467,100 + 3ig
12388.48 0.00100250 0.00009053 12,357,200 + ziw
14453.22 0.00128025 0.00011700 12,253,700 + 1}y
16517.97 0.00136150 0.00014258 12,141,200 + T3y
18582.71 0.00154218 | 0.00017085 | 12,058,100 + 1h
20647.46 0.00171866 0.00020685 12,021,800 + 539
24776.95 0.00208016 0.00036810 11,920,000 — ¥
28906.45 0.00247491 0.00045815 11,687,400 — 35
33030.80 0.0029450 0.00050768 11,222,750 +
37159,65 0.003429

In this case the highest coefficient of elasticity results from
the smallest strain which is recorded. The difference in this
respect between this example and the preceding one results
doubtless from the internal structure of the iron.  The coefli-
cient in both these cases is much less than that found for other
kinds of cast iron, as is shown in the Table of Resistances in the
Appendix.

Mr. Hodgkinson proposed the empirical formula, P =
170,763\, — 36,318A%, to represent the results of the experi-
ments ; and although it may represent more nearly the results
for a greater range of strains than equation (3), yet there is no
advantage in its use in practice.
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A45,—COMPRESSION OF WROUGHT IRON,

Mr. Hodgkinson also made experiments upon bars of wrought
iron in precisely the same manner as upon those of cast iron,
the results of which are given in the following

TABLE,

Giving the Results of Experiments by Mr. E. Hodgkinson on bars of Wrought Iron,
each of which was ten feet long.*

1st Bar. 2d Bar.
Weight producing Section = 1.025 x 1.025 sq. in. Bection = 1.016X1.02 sq. in.
the compression,
Amount of Amount of
Compression. Value of E. Compression. Value of E.
1hs, inch, 1bs. inch. 1bs,
5098 0.028 20,796,500 0.027 21,864,000
9578 0.052 21,049,000 0.047 23,595,000
14058 0.073 21,979,000 0.067 24,273,000
16298 0.085 21,343,000
18538 0.096 22,156,000 0.089 24,108,000
20778 0.107 22,160.000 0.100 24,038,000
23018 0.119 23,587,000 0.113 23,587.000
25258 0.130 92,095,000 0.128 23,679,000
27498 0.142 22,111,000 0.143 22,259,000
29738 0.152 21,938,000 0.163 21,139,000
31978 0.174 20,979,000 0.190 19,478,000
In $ hour. 0.261
Again after 3 ,
hour. 0.269
Then repeated. 0.328

46. 6RAPHICAL REPRESENTATION.—These two cases are
graphically represented in Fig. 138. It is seen from the tables
that the compressions are quite uniform for a large range of -
strains, and hence equation (2), page 17, is applicable to com-
pressive strains when within the elastic limits. In the case of
the wrought-iron bars, the first one attains its maximum coeff-
cient of elasticity for a strain somewhat less than one-half its
ultimate resistance to crushing, and the second bar at about one-
third its ultimate resistance. .

A7. COMPARATIVE RESISTANCE OF CAST AND WROUGHT
meoN.—The coefficient of elasticity is a measure of the com-
pressibility of metals. Hence, an examination of the two pre-
ceding Tables shows that of the specimens used in these

* The coefficients of elasticity were computed by the author.
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experiments, the cast iron was compressed nearly twice as much
as the wrought iron for the same strains. An examination of
the Table of Resistances, in the Appendix, shows that for a mean
value wrought iron is compressed about two-thirds as much as
cast iron for the same strain. The same ratio evidently holds
for tension. This is contrary to the popular notion that cast
iron is stiffer than wrought iron; for it follows from the above
that a cast-iron bar may be stretched more, compressed more,
and bent more, than an equal wrought iron one with the same
force under the same circumstance, and in some cases the
changes will be twice as great. One reason why cast is con-
sidered stiffer than wrought iron probably is, that wrought iron
does not fail suddenly as a general thing, but it can be seen to
bend for a long time after it begins to break ; while cast iron,
on account of its granular structure, fails suddenly after it be-
gins, and the bending which has previously taken place is not
noticed. It is not safe to trust to such general observations for
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scientific or even practical purposes, but careful observations
must be made, so that all the circumstances of the case may be
definitely known. It will hereafter be shown that the ultimate
resistance to crushing of cast iron is double that of wrought

- iron, and yet Fairbairn and other English engineers have justly
insisted upon the use of wrought iron for tubular and other
bridges. For, without considering the comparatively treacherous
character of cast iron when heavily loaded, it appears that
within the elastic limits (and the structure should not be loaded
to exceed that), a wrought iron structure is stiffer than a cast
iron one of the same dimensions, and will sustain more within
the elastic limits for a given compression, extension, or deflec-
tion.

48, COMPRESSION OF STEEL.—Good cast steel has a higher
coeflicient of elasticity than any other metal upon which experi-
ments have been made for the purpose of determining it; and
yet it exceeds by only a small amount the coeflicient for the best
iron. But the lmit of elasticity of steel greatly exceeds that
of iron, as has already been observed in article 38. In the noted
St. Lonis Bridge the coeflicient of elasticity of the steel wasnot
to be less than 26,000,000 1bs., nor exceed 30,000,000 lbs.

49, COMPRESSION OF OTHER MATERIALS.—All materials
are compressible as well as extensible, and it is generally as-
sumed that their resistance to compression, within the elastic
limits, is the same as for extension; but, as has been seen in
the previous articles, this is not rigorously correct. The mean
value, however, of the coeflicient of elasticity is sufficiently
exact for practical cases.

30.—ExamprLr.—1. Required the compression of a sphere which rests up-
0 on a plane ; the weight of the sphere being the only load.
This may be readily solved by supposing that all horizon-
tal sections before compression remain plane and horizon-

tal during compression. )
e Take o, the highest point of the sphere, as the origin of

Fre. 14. co-ordinates ; z vertical and ¥ horizontal.
¢ = the weight of a unit of volume; and
9 = the radius of the sphere, -
Then y* = 2 r 2—2°;
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K = x3 = = (3 r 2 — 2% = the area of any horizontal section ; and
2 .
P=5‘/‘4Kda!=5u @re—a)de=3rrat—¢téna’ =

0
the weight of all the segment above the section,

2 z
= Pdn _ 4 rrdl g L
ot A = EEK z rRrz— 2%
° 0
z z
g rmd@_*i ordx
E 2r—x * K S —a
0 0

2 (= 2r 2+ 47 Nap. log 2r
E(ﬂ!— 2 Lp. .m)

For a hemisphere this becomes, by making z = 7

7?3 i
A= 6F 4 Nap. log. 2 — 1) _0'29543T
¥or the sphere z = 2 7 and the Equation gives
A= @

as it should, since theoretically there is only a point where it touches the plane
to sustain the whole sphere, and Eq. (2) gives \ = oo when 4 = 0, and the other
quantities are finite. But practically we know that this is not true, and it is
easily accounted for by supposing that the sphere as well as the body upon
which it rests is flattened in the vicinity of z so as to present a surface of finite
magnitude for supporting the weight above it.

81, Required the compression of any portion of a cylindrical annulus when
it lies upon a horizontal plane, its axis being parallel to the plane, and the
weight of the annulus being the only load.

The true distortion in this case, as well as in the preceding one, is peculiar.
There will be a bulging outward, as well as depression vertically, and there
will also be a moment of stress. But it may be solved by assuming that the
only strains are vertical compressions, and that horizontal sections remain
horizontal during compression.

If the annulus is very thin compared with the diameter of the circle we
have, the origin being at the highest point,  vertical and y horizontal;

t = the thickmess; ’
. g
P=tvers sin 7 K
U = dz = the height of an infinitely short prism; and

K=t -2:—- = the horizontal section at any point for a unit of

length.
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2
1
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D.QA=_ — e -
rkE V2rz—2 vers sin 2d»

o r

The approximate value of which may be found by developing it into & series
and integrating several terms. If the origin of co-ordinates be taken at the

centre of the cylinder we have
z
1

— ~ =z
V©P=2 s —d
r
4
From this example we see that if a large cylinder (as for instance a steam
cylinder, or a boiler) be made exactly cylindrical when it stands upon one end,
it will be oval when it is placed on its side.

52. THE PARALLELISM OF SECTIONS, which was assumed in the
two preceding problems, would not be realized in any actual case. The solution
properly belongs to the Mathematical Theory of Elasticity, and involves the

most refined analysis. An ezact solution may not be possible.
53. A GENERAL STATEMENT OF THE PROBLEM of the math-
ematical theory of the equilibrium of a solid body is:
A solid of any shape, when undisturbed, is acted on tn its substance by a foree
distributed through it in any manner, and displacements are arbitrarily pro-
duced. It i3 required to find the displacement of every point of its surface.

54, ANALYTICAL EXPRESSION., If X, Y, and Z be the Tesolved
components of the applied force, and the remaining notation be as given on
page 217, then for any point (2, ¥, 2) within the solid we have
(] X! xi
Py By xo 9

P
@ Ty tw

apsx Apyy Py _
*djz + dy + - dz + ¥Y=0
APy ap.y ap. _
@ty te tZ=0

55. PARTICULAR VALUES. In the preceding problems X =0,
Y=0,and Z= —g. It will be shown in Chapter IX. that when a pris-
matic bar is compressed by a longitudinal stress that it will expand laterally,
and in a perfectly homogeneous body the expansion per unit will be approxi-

mately } of the contraction per unit.
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ULTIMATE STRENGTH.

36. mopULUS FOR cRUSHING.—The modulus of resistance
to crushing is the pressure which is necessary to crush a piece
of any material whose section is unity, and whose length does
not exceed from one to five times its diameter.

The law of resistance to crushing is not simple. Granular
blocks, like some kinds of stone and cast iron, often separate in
planes (or surfaces approximating to planes) which are inclined
to the base.

Glass in some cases separates in thread-like filaments when it
is crushed. Wrought iron does not fail suddenly, like the
bodies just mentioned, but considerable tenacity remains be-
tween the fibres after it begins to fail. Then, too, in all cases
the resistance to crushing depends upon the length of the piece.
If the blocks are very short (from one to five times the diameter
as mentioned above) we get simply crushing; but if they are
long compared with their diameter, the phenomena are very
complex, there being a combination of bending and crushing,
and the law which governs it is determined only approximately
by direct experiment, as indicated in article 62. '

It is found by experiment that the resistance of short pieces
(blocks) to crushing varies nearly as the transverse section of
the piece, no matter what the form of the fracture may be.

" Hence, if
P == the crushing force, and
K = the section under pressure, we have

P=CF..cccccviiiiiiiiininnn.... (22)
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857 .—RBESISTANCE TO CRUSHING OF CAST-IRON.

TABLE

Of the results of Experiments on the Tensilc and Crushing Resistances of Cast-
Iron of various kinds, made by Eaton Hodgkinson.*

Description of the Tron, i"g.?‘:iﬁ"f Helght of mi"“m:l{: mﬁ%‘%&;“"t’
Lbs, inch., Lbe. Mean.

Low Moor Iron, No. 1.| 13,604 |{ 3 | 20882 N :8.811. 476
« o« wNoz| was |44 | P 816
Clyde Iron, No. 1..... .25 (38 | B b abi:s.6
«  « No ... meor |14 | 1aoes Higiab1:c.em
“  “ No. 3..... 2,068 |1 % | 100861 |1iaiaep)1:4.018
Blaenavon Iron, No. 1.| 13,038 |§ 4 | 0380 J1:8.500 4. 6 149
« o« Noz.| 167 |74 | PR H:T0%14 . 60m
« o« Nog| moer |44 | B3R [iiToal1: 4.
Calder Tron, No. 1.....| 18785 |1 & | 728 N :3-2080q . 50
Coltness Tron, No. 3... 15,218 |1 4 | 100480 1880014 . 6 6u
Brymbo Tron, No. 1...| 14426 |{ & | TEE 1:B28814 . 501
“« « Nos.| wps {4 | T0 Riidali:dems
Bowling, No. 2....... eCEIVI I B O Ol S A SR
Tatalyten, No. 2...... s |34 | O Lo nett:eums
.m%’ No.1....| 13,052 { 4| 22;2503 }gg:g}l 1 5.811
“«  Noo... i (44 | TS HidEaeri:smm
Stisling, 24 quality....| 26,764 |{ .3 | 10d8 Tt liam
“ 83 quality....| 23,461 { 1% }gg;g?% {ggggil 6.149
Mean....... .| 16,303 { " gﬁﬁgg Mean ratio 1 : 5.64

* Supplement to Bridges, by Geo. R. Brunell, and Wm, T. Clark. John

Weale, London,
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In this table the ratio of resistances range from about 4%
(Clyde, No. 3) to more than 7 (Blaenavon, No. 2). The same
experimenter once obtained the ratio of 8.493 from., a specimen
of Carron iron, No. 2, hot blast;* and the mean of several ex-
periments, made at the same time, gave 6.594. Hence we have,
as the mean result of a large number of experiments, that the
crushing resistance of cast iron is about 6 times as great as its
tenacity ; but the extremes are from 4% to 8% times its tenacity.

58. RESISTANCE OF WROUGHT IRON TO CRUSHING.—
Comparatively few experiments have been made to determine
how much wrought iron will sustain at the point of crushing,
and those that have been made give as great a range of results
as those for cast iron.

Hodgkinson gives ¢ = 65000 +
Rondulet “« (O =70800%
Weisbach “ 0= 172000 §
Rankine “ ¢ = 30000 to 40000 |
It is generally assumed that wrought iron will resist about
two-thirds as much to crushing as to tension, but the experi-
ments fail to give a very definite ratio.

39. RESISTANCE OF STEEL T0 CRUSHING.—Major Wade
found the following results from experiments upon the several
samples of cast steel, all of which were cut from the same bar
and treated as indicated in the table.q

Specimen. ' Length. Diameter. 1bfrp';h;3.giin“ch.
Not Hardened.........cc00.0.. 1.021 0.400 198,944
Hardened, low temper. .. ....... 0.995 0.402 854,544
o mean ‘¢ 1.016 0.403 891,985

“  high ‘¢ for toolsfor
turning hard steel..|  1.003 0.405 872,598

* Résistancs des Matériauz, Morin, p. 95, -

t Vose, Handbook of Railroad Construction, p. 137. (0ld Edition.)
1 Mahan's Civil Engineering, p. 97.

§ Weisbach, Mech. and Eng., vol. i., p. 215.

| Rankines Applied Mech., p. 633.

4 Report on Metais for Cannon, p. 258.
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CHROME STEEL resists from 160,000 to 195,000 pounds per
square inch. Indeed Captain Eads says in his report that the
crushing registance of chrome steel may be increased to any de-
sirable amount by the simple addition of chromium.

690. RESISTANCE OF WOOD TO CRUSHMING.— T he resistance
of wood to crushing depends as much upon its state of dryness,
and conditions of growth and seasoning, as its tenacity does.
The following are a few examples :—

Kind of Wood. Dry. Very Dry.
Ash. . i it ettt care e 8,680 9,360
Oak (Englisk). .. .ovoeiiiineiieiiiananann. 6,480 10,058 -
Pine (Pileh). .o ooveiiereeeetnneneannncnns 6,790 6,790

These results, compared with the corresponding numbers in
article 22, show that these kinds of wood will resist from 1% to
nearly 2 times as much to tension as to compression. For other
examples see the Table in the appendix.

61. RESISTANCE OF GLASS TO CRUSHING.— We owe most
of our knowledge of the strength of glass to Wm. Fairbairn and
T. Tate, Esq. According to their experiments we have the
following results for the crushing resistance of specimens of
glass whose heights varied from one to three times their
diameter.

MEAN CRUSBHING RESISTANCE OF CUT-GLASS CUBES A¥D ANNEALED
GLASS CYLINDERS.

‘Weight per Square Inch.

Description of the Glass,
Cubes. Cylinders.
1bs. 1bs.
FLint Glass.......cveneennnnnns 18,130 27,582
Green Glass........cecveveeienad 20,206 81,876
Crown Glass..........cn.. eeaienn 21,867 R 31,003
Mean.....o.oovvvinnninnnnn 18,401 30,153
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The ratio of the mean of the resistances is as 1.to 1.6 nearly.

The cylinders were cut from round rods of glass, and hence
retained the onter skin, which is harder than the interior, while
the cubes were cut from the interior of large specimens. This
may partially account for the great difference in the two sets of
experiments. The cubes gave way more gradually than the
cylinders, but both fractured some time before they entirely
failed. The cylinders failed very suddenly at last, and were
divided into very small fragments. The specimens had rnbber
bearings at their ends, so as to produce an uniform pressure
over the whole section..

62. sTRENGTH ,0F PILLARS,—The strength of pillars for
incipient flexure has been made the subject of analysis by Euler
and others, but practical men do not like to rely upon their
results. Mr. Hodgkinson deduced empirical formulas from ex-
periments which were made upon pillars of wood, wrought iron,
and cast iron. The experiments were made at the expense of
‘Wm. Fairbairn, and the first report of them was made to the
Royal Society, by Mr. Iodgkinson, in 1840: The following
are some of his conclusions :—

1st. In all long pillars of the same dimensions, when the
force is applied in the direction of the axis, the strength of one
which has flat ends is about three times as great as one with
rounded ends.

2d. The strength of a pillar with one end rounded and the
other flat, is an arithmetical mean between the two given in the
preceding case of the same dimensions.

3d. The strength of a pillar having both ends firmly fixed, is
the same as one of half the length with both ends rounded.

4th. The strength of a pillar is not increased more than 4th
by enlarging it at the middle.

To determine general formulas, bars of the same length and
different sections were first used ; then others, having constant
sections and different lengths ; and formulas were deduced
from the results. The formulas thus made were compared with
the results of experiments on bars whose dimensions differed
from the preceding. The following are the results of some of
his
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EXPERIMENTS ON SQUARE PILLARS.

Length of Side of the square, Crushing weight. Exponent of the
Feet. Inches. Lbe,
10 9196 2;:8%} 8.57
10 150 2802 | 41
T 18 ot 8.00
% 10 9,2?3 z’ 4.08
5 1% 15038 | 8.07
% 100 27512 2.09
R B
Mean. . .... 8.59

The fourth column is computed as follows :—
Suppose that the strengths are as the « power of the diame-
ters, then for the first bar we have

151\* 23025
= 1. z — 1 -
0766 To45 O 1971 1.30
__log. 11.30 _
= n = 3.57.

The others are computed in the same way.

An examination of the table shows that when the square
section is the same, the strength varies inversely as some func-
tion of the length. Thus, of two bars whose cross section is one
square inch, the one five feet long is nearly four times as strong
as the one ten feet long.

Let I = length of one,

U = ¢« of other,
d = diameter of first one,
d = ¢« of the second one, and

y = the power of the length.

8.5
Then the strength of the first one is, 2 = constant x (Zi”
7 8.5

“ “ “  gecond is, P’ = constant x 7
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P ra\*® '\s?
~ (7)) =@)
in which substitute the values from any two experiments. Thus
if we take from the table
U = 10 feet, &' = 1 inch, P’ = 4225 1bs., and
! = b5 feet,d = 1inch, and P = 18038 lbs., we have
18038 _ ,,
4225
. log. 42694
S Y = W-T
Proceed in a similar way with each of the others and take
the mean of the results for the power to be used. In this way
was formed the following

= 2.094

TABLE
For the absolute strength of columns.

in which P = crushing weights in gross tons,
d = the external diameter, or side of the column in inches,
d, = the internal diameter of the hollow in inches, and
{ = the length in feet.

Both ends rounded, the| ), onag fat, the length o

length of the col . ;
Kind of Column. mﬂgo({‘ié;:::;ﬁ; ‘;’; the ootlilxlx::: ; ‘:xmlelgr ] thirty
TONS, TONS,
Solid Cylindrical Col £) a" @
0] ylindri olumns o — | — @
cast irom.......ecvviiannn f P=140 [ P =44.16 I
Hollow Cylindrical Col alas aZa"
ollow CUylindric olumns _ -— _ —d,
of castiron.............. } P=18 T P =44.34 S
Solid Cylindrical Columns of } |, & _ d:_‘
wrought iron............. § P =42 T P =133.75 3
Solid Square Pillar of Dant-{ | .. ... ....... P =10.95 &
zicoak....o0 veeniienian. 3
Solid Square Pillarof reddry ) | .. .. ... .. ...... —rg &
dea].? ........................... P =181 3

The above formulas apply only in cases where the length is
8o great that the column breaks by bending and not by simple
crushing. If the column be shorter than that given in the
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table, and more than four or five times its diameter, the strength
is found by the following formula:

_  P.CK
—_— }'—,TW -----------------

in which P = the value given in the preceding table,
K = the transverse section of the column in square
inches,
€ = the modulus for crushing in toms (gross) per
square inch, and
W = the strength of the column in tons (gross).*
Experiments have been made upon steel pillars which gave
good results.

63. WEIGHT oF PILLARS.—From the first formula of the
preceding table we find

P Py.%lrﬁig'g"

14.9%7%
The area of the cross-section is 1 « @7 and the volume in
inches =12 » & [. ‘
Cast iron weighs 450 pounds to the cubic foot, hence the
Yepbdt
450 X3 xad x l:g% x 3.1416 xPT [5—
1728 288 1agThs
If P is given in pounds, this coefficient must be divided by
994073
.. weight in pounds = 0.0121702 (PP T3, . (95),
If the pillar is hollow the section of the iron is 1 = (& — &),
and if # is the ratio of the diameters, so that &, = n d this be-
comes

weight =

3= d (1 — »’); and its volume in inches = 112 vd’'(1—nY)i;

and its weight in pounds = 450 x #d* (1 — )i

1798 *©

* James B. Francis, C. E., has published a set of tables which gives the
strength of cast-iron columns, of given dimensions, by means of equation (24),
and also by those in the above table.

t London Builder, No. 1211,
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- If the value of @ from the second equation of the first column
in the preceding table, be substituted in the precedmg equa-
tion, we find the

weight n pounds =
25 x 1—-a
9% 1 . 7 A
32 (2240 x 18 ) Ths (1 — n8™)rd3 G D

To find the weight for a five-fold security these results must
be multipliéd by 5rs.

Proceeding in this way with each of the cases given above
and we form the following :

TABLE

Of the weights in pounds of pillars in terms of their lengths (1) tn feet, when
loaded to one fifth their orushing strength (P) ¢n pounds.

‘Weight in pounds.

Kind of Pillar. Both ends ronnded. Both ends fiat.

1> 15d. 1>2801.

Solid Cylindrical Col- 1 -
umn of cast iron. |0.028648953 (P.I338) T-¥3|(,009321706 (P.I*-4%) T-778

Hollow Cylindrical Col- 1— 1—
O mns of cast iron, 0.024392078——"— x|0.009300164 — 1" =
d,=nd. (l—n’") T (1—n2s)T-178
(Rlﬂ 13)1 85 (P13-|16)I.J7

if n=0.98 |0.003881655 (P.7*-%) T5¥ 0.001658138 (P.p-m) T17F

i 1=0.95 (0.006001775 (P.I-3%) T-57 |0,002489827 (P.[*-1%) T T8

if 7=0,925/0.007265678 (P §*+5¢) T3 (0002987882 (P.1-v) THTE
if n=0.90 0.008396144 (P.7*-3*) 757 0.003406063 (P.p-+15) T+H7E
if n=0.875:0.000373430 (P.1*-5%) T:5% |0.003773581 (P.I1%) TITE
it n=0.85 |0.C10261387 (P.3* %) T¥% |0.004106908 (P.1-41s) 778
it 7==0.80 [0.011862713 (P.I*-5%) T47 (0,004702651 (P.3-+1%) 7478

n=0.75 0.013297905 (P.j*-58) T T |0,005283352 (P11 TTE

Solid Cylindrical Col- . 5y T
umns of Wrought0.014115831 (B.12-s ¢y T-¥5 [0.004993604 (P.1*")
Tron,

Square Column of Dant-{(Cubic foot weighs 47.24 +
zic Oak. pounds.) 0.001223770 (P*P)
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If the thickness of the metal (¢) and the external diameter
are given, n» may be found as follows : @ — 2¢ = internal diame-
ter, hence n = 432 =1 —%_ For instance, if the external
diameter is 6 inches, and the thickness 4 of an inch, the inter-
nal diameter is 5} inches and n =% = 0.875. .

The iron used in the preceding experiments was Low Moor
No. 2, whose strength in columns is about the mean of a gieat
variety of English cast iron, the range being about 15 per cent.
above and below the values given above.

64.—CONDITION OF THE CASTING.—Slight inequalities in
the thickness of the castings for pillars does not materially af-
- fect the strength, for, as was found by Mr. Hodgkinson, thin
castings are much harder than thicker ones, and resist a greater
crushing force. In one experiment the shell of a hollow column
resisted about 60 per cent. more per square inch than a solid
one.* DBut the excess or deficiency of thickness should not in
any case exceed 25 per cent. of the average thickness.t Thus,
if the average thickness is one inch, the thickest part should not
exceed 1% inch, and the thinnest part should not be less than £
of an inch.
It is also found that in large castings the crushing strength
of the part near the surface does not much exceed that of the
internal parts.

6. COMPRESSION OF TUBES.—BUCK~
LING.—Wrought iron tubes when sub-
jected to longitudinal compressive stresses
may yield by crushing like a block, or by
bending like a beam, or by buckling.
The first takes place when the tube is
very short; the second, when it is long
compared with the diameter of the tube ;
and the last, for some length which it is
difficult to assign, intermediate between -
the others.

The appearance of a tube after it has

Fe 15. Fro. 16, yielded to buckling is shown in Figs. 15
and 16.

* Phil, Trans., 1857, p. 890. 1 Stoney on Strains, vol. ii., p. 206,

L}
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&

The experiments heretofore made do not indicate a specific
law of resistance to buckling ; but the following general facts

appear to be established :*—

1. The resistance to buckling is always less than that to
crushing ; and is nearly independent of the length.
2. Cylindrical tubes are stromgest; and next in order are

square tubes, and then rectangular ones.

3. Rectangular tubes, [ |, are not as strong as tubes of this
form [ | ] The tubes in bridges and ships are generally rec-

tangular or square.

COLLAPSE OF TUBES.

66. THE RUPTURE OF TUBES
which are subjected to great external
normal pressure is called “ a collapse.”
The flues of a steam-boiler are sub-
jected to sunch an external pressure,
and in view of the extensive use of
steam power, the subject is very im-
portant. The true laws of resistance
to collapsing were unknown until the
subject was investigated by Wm. Fair-
bairn. Experiments were carefully
made, and the results discussed by him
with that scientific ability for which
he is so noted. They were published
in the Transactions of the Royal
Society, 1858, and republished in his
“ Useful Information for Engineers,”
second series, page 1.

The tubes were closed at each end
and placed in a strong cylindrical ves-
sel made for the purpose, into which
water was forced by a hydraulic press,
thus enabling him to cause any desir-
able pressure upon the outside of the
tube. In order to place the tube as
nearly as possible in the condition of

|
§

Fia. 17.

* Civ. Eng. and Arch. Jour., vol. xxviii., p. 28,
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a flue in a steam-boiler, a pipe which communicated with the
external air was inserted into one end of the tube. This pipe
permitted the air to escape from the tube during collapse.
The vessel, pipe, tube, and their connections were made
practically water-tight, and the pressure indicated by gauges.
Fig. 17 shows the appearance and cross-section at the middle
of the short tubes after the collapse; and Fig. 18 of a long
one. Although no two tubes appeared exactly alike after the
collapse, yet the examples which I have selected are good types
of the appearances of thirty tubes used in the experiments.
The tubes in all cases collapsed suddenly, causing a loud
report. In the first and second tubes the ends were supported
by a rigid rod, so as to prevent their approaching each other
when the sides were compressed.
The following tables give the results of the experiments :—
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TABLE 1. .
Thickness (}’“““N lg; Product of t}:m,ém of
e P e,
Mark. | No. °fnf§2£”' g‘&m ui:cgg&in Pr. 8q. in. of | on3 Tengtn, | Lensth, and
& é L ool B O P iy}
A 1 | 0.043 4 19 170 8230
B 2 o o 19 187 2603 10412
C 3 “ “ 40 65 2600 10400
D 4 “ « 38 65 2470 9880
E 6 “ “ 60 43 2580 10320
F 6 “ “ 60 140* 2800
Mean 2714 10253
G 7 “ 6 30 48 1440
H 8 “ “ 20 47 1208
J 9 “ “ 59 . 82 1888 11828
K 10 “ “ 80 52 1560 9360
L 11 “ “ 30 65 1950 11700
M 12 “ “« 80 85¢ ?
‘ Mean 1620 10796
N 18 « 8 30 39 1170 9360
) 14 “ “ 89 82 1248 9984
P 15 “ “ 40 81 1240 9920
_ Mean 1219 9754
Q 16 “ 10 50 19 950 9500
B 17 “ [ 30 33 990 9900
Mean 970 9700
8 18 o 12.2 58¢ 11.0 643.7 7850
T 19 “ 12 60 12.5 750 9000
v 20 6 “ 80 22 662 7920
Mean 685.2 8256

* This tube had two solid rings soldered to it, 20 inches apart, thus practically reducing it to
$hree tubes, as shown in Fig. 19.

4 The ends of both were fractured,
tained its maximom,
$ A tin ring had been left in by mi

3

1

, perhaps before the outer shell had at-

sist to collapsi
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@7. viscussion oF BxsuLTs.—By comparing the tubes of
the same diameter and thickness, but of different lengths, we
see that the long tubes resist less than the short ones; hence,
the strength is an <nwverse function of the length, and an ex-
amination of the seventh column shows that it is nearly a sim-
ple inverse function of the length. The first of the 4 inch
tubes is 8o much stronger than the others, it may be neglected
in determining the law of resistance, although it differs from a
mean of all the others by less than } of the mean. An exami-
nation of the several cases indicates that we may safely assume
that the resistance to collapsing varies snversely as the lengths
of the tubes.*

The mean of the results for the several diameters in the
last column shows that the resistance diminishes somewhat
more rapidly than the diameter increases ; but this includes the
error, if any, of the preceding hypothesis. As the power of
the diameter is but little more than unity, it seems safer to con-
clude, for all tubes less than 12 inches in diameter, as Fair-
bairn does, that the resistance of tubes to collapsing varies in-
versely as their diameters.

68. LAW oF THICKNESS.—Experiments were also mede
to determine the law of resistance in respect to the thickness.
Comparatively few experiments were made of this character,
but these few gave remarkably uniform results. One of the

* A more exact law may be found as follows:—Let P = the compressing
force per square inch; ¢ = a constant for any particular diameter and
thickness, § = the length, and n the unknown power. Then

Pz—g—foronecase.

P, = lO’ for another.
1

By means of this equation, and any two experiments in which the thickness
and diameter are the same, 7 may be found, and by using several experiments
8 series of values may be found from which the most probable result can be
obtained. But in this case the mean result is 80 near unity, there is no prao-
tical advantage secured by finding it.
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tubes (No. 24), was made with a butt joint,as shown in Fig.
20, and the others with lap joints, as in Fig. 21,

The following are the results of the experiments:—

-TABLE II
Thickness.| Diameter. | Length in| Pressure per i Product.
Mark., No. t. d. inches. | square inch. P L. 1 L.Pad
L. P, =p.

W 21 0.25 9 37 (450) Unoollapsed.
X 22 0.25 18% 61 420 25620 480375
Y 23 0.14 9 87 © 282 9694 89048
Z 24 0.14 9 37 378 13985 125874
JJ 33 0.125 14} 60 125 7500 108750

Tubes Nos. 23 and 24 were exactly alike in every respect
except their joints ; and it appears that the butt joint, No. 24,
is 1.41 times as strong as the lap joint, a gain of 41 per cent.
But this is a larger gain than is indicated in other cases; for
instance, No. 33, which is also a lap joint, offers a greater re-
sistance a8 indieated in the last coluwmn, than No. 23, although
the former is not as thick as the latter. Still it seems evident
that butt joints are stronger than lap joints, for with the
former the tubes ecan be made circular, and there is no cross
strain on the rivets, conditions which are not realized in the
latter.

The resistance of the 23d is so small compared with others,
it is rejected in the analysis.

‘We observe that the resistance varies as some power of the
thickness ; if then C and 7 be two constants to be determined
by experiment, and we use the notation given above, we shall
have for the pressure of collapse of one tube,
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cr

P_d—L dPL:p'=Ot" ............ (27)
and for another tube
ct» -
P, = iL cod, P L =p = Ctr...... (28)
Hence we have
2 _ (Y
y t.)
_log.p — log. p,
or,n = Tog.t —Tog g, "ttt (29)
and0=_-=% .................... ..(30)

TO FIND THE CONSTANTS 7 AND C.

The mean of the mean of the values of p from Table L is
» = $[10253 + 10796 + 9754 + 9700 + 8256] = 9752 and
t = 0.043.

Using these values and others taken from the preceding
tables, and the following values may be found for n :—

In equation (29) make p = 480375, ¢ = 0.25, p, = 9752, ¢,
= 0.043; and we get

__ log. 480375 — log. 9752 _
= “log. 095 — Iog. 0043 — 2200

Similarly, taking p = 480375, ¢ = 0.25, p, = 10253, ¢, =

0.043 ; and we get
_ log. 480375 — log. 10258 _ , oo
= Tlog. 095 — log. 0.0

The mean value of p for all but the 12-inch tubes in Table

L is

» = 1(10253 + 10796 + 9754 + 9700) = 10125
hence, using p = 125874, ¢ = 0.14, p, = 10125, ¢, = 0.043;
and we get

__log. 125874 — log. 10125 __ .
log. 0.1% — Tog. 0.088 = 21345
and taking » = 108750, ¢ = 0.125, p, = 10125 and ¢, = 0.043;
we get

_ log. 108750 — log. 10195
log. 0.125 — log. 0.043
and the mean of these results is, n = 2.18.

= 2.208,
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Fairbairn made it 2.19 by including some data which I have
rejected as paradoxical ; I have also given more weight to those
cases which gave nearly uniform results. The difference, how-
ever, of 0.01 is too small to seriously affect practical results.

To determine the constant, C, substitute the proper values
taken from the preceding tables in equation (30), and we have
for four cases the following :—

9752

0 == m—?)m =9,298,900.
480375
125874 p

O = g = 0,144,000,
108750

= =

O = §qssmm = 10,109,400.

The mean of which is ¢ = 9,604,150, Calling ¢ =
9,600,000 and equation (27) becomes:

tﬂ.l.
P = 9,600,000 v AR RCRERR R P PR PLY (1)
If Z be given in feet, so that Z = 12 Z,, we have
_ £ ’
P = 800,000 TL e (32)

The coeflicient, 9,600,000, applies only to the kind of iron
used ; but the exponent, 2.18, is supposed to be constant for all
kinds of iron.

69. FORMULA FOR THICKNESS TO RESIST COLLAPSING.
—Equation (31) readily gives the following expression for find-
ing the thickness in inches of a tube to resist collapsing :—

log. P + log. (d. L)

log. 100 ¢ = i

—1.203.....(33)

70. ELLIPTICAL TUBES.—Experiments made upon ellipti-
cal tubes showed that the preceding formula would give the
‘strength, if the diameter of the circle of curvature at the ex-

tremity of the minor axis is substituted for &. The diameter
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of curvature islz—a-, in which ¢ is the major and b the minor

b
axis.
Experiments made upon tubes in which the ends were not
connected by internal rods, showed that the resistance was in-
versely as their length.

71, VERY LONG TUBES.—Some experiments were made

" upon a tube 35 feet long and one 25 feet long. Sufficient pres-

sure was applied to distort them, but not to collapse them, and

it was found that Equation (31) erred by at least 20 per cent.,

giving too small an amount. It was, however, very evident

that the length was still a very important element in the
strength.

72. COMPARISON OF STRENGTH FROM EXTERNAL AND
INTERNAL PRESSURE.—Let p be the internal pressure per
square inch at which the tube is ruptured, then for tubes of the
same thickness and diameter we have from Equations (18) and
(32), by calling 7" = 30,000 lbs.,

_ 1z
P "~ 1333 ¢®

If p= P,then I, = 13.33 ¢'%.

If ¢ = 0.25, then we find Z = 2.59 feet, that is, a tube whose
thickness is £ of an inch, and whose length is 2.59 feet, is
equally strong whether subjected to internal or external pres-
sure.

If the tube is so thick that the unequal stretching of the
fibres must be considered, then Equation (20) must be compared
with Equation (32), in which case we have :—

p__T 4L
P 7 800,000 © (r + 2) &°

If p = P, T = 40,000 1bs., and 2r = & = 4 inches;
then 2¢M¢ + £18 = 1 L,

If ¢ = 4 inch, L = 5.504 feet.

Ift=1 « L =15.000 feet.

73. RESISTANCE OF GLASS GLOBES TO COLLAPSING.—
Fairbairn also determined that glass globes and cylinders fol-
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lowed the same general law of resistance. For globes of flint
glass he found :

1.4
P, =28,300,000 dtT* ..................... (34)
and for cylinders of flint glass:
1.4 )
P, = 740,000 ;;7 ....................... (35)

providing that their length is not less than twice, nor more than
pix times their diameter. Dividing Equation (35) by (31) gives
P, 00770 '
A

If £=0.043 ’in., %‘ = 0.896 ; or the glass cylinder is nearly &

as strong as the iron one. If they are equally strong, P = P,
= ¢ = 0.0373 of an inch. :
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CHAPTER IIIL

THEORIES OF FLEXURE AND RUPTURE FROM TRANSVERSE
STRESS.

74.—BEmMARK.—The ancients seem to have been entirely
ignorant of the laws which pertain to the resistance of solid
bodies. They made some rude experiments to determine the
absolute strength of some solids, especially of stone. They may
have recognized some general facts in regard to the strength of
beams, such as that a beam is stronger with its broad side ver-
tical than with its narrow side vertical, but we find no trace of
any law which was recognized by them. This department of
science belongs wholly to modern times. A very brief sketch
of the history of its development is given below.*

The greater part of this chapter will be much better under-
stood after reading Chapters. IV, V, and VL

785.—GALILEOS THEORY.—Galileo was the first writer, of
whom we have any knowledge, who endeavored to establish the
mathematical laws which govern the strength of beams.+ He
assumed—
1st. That none of the fibres were elongated or compressed.
2d. When a beam is fixed at
~one end, and loaded at the other,
it breaks by turning about its
lower edge, Fig. 22, or if it be
sapported at its ends and loaded
at the middle of the length, it
would turn about the upper edge;
hence every fibre would resist ten-

sion.
- 3. Every fibre acts with equal
‘ Fio. 22. energy. From these he readily

* For a more complete history, see introduction to ** Réststanis des Corpe
Solides,” yar Navier. 3d edition. Paris, 1864,
{ Opere di Qalileo. Bologne, 1656.
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deduced,—that, when one end is firmly fixed in a wall or other
immovable mass, the moment of resistance of the section is equal
to the sum of all the fibres, or the transverse section, multiplied
by the resistance of a unit of section, multiplied by the distance
of the centre of gravity from the lower edge. Hence, in a rec-
tangular beam, if

T = the tenacity of the material,
b = the breadth, and
@ = the depth of the beam ;

the moment of resistance is

- '76.—moBERT HookE's THEORY.—Robert Hooke was one
of the first, and probably the first, to recognize the compressi-
bility of solids when under pressure. In 1678 he announced
his famous principle, Ut tensio sic vis; which he gave in an
anagram in 1676, and stated as the basls of the theory of elasti-
city that the extensions or contractions were proportional to the
forces which produce them, and also that when a bar was bent
che material was compressed on the concave side and extended
on the convex side. ‘

77, —MARIOTTE'S AND LEIBNITZ'S THEORY.—Mariotte,
in 1680, investigated the subject, and finally stated the follow-
ing principles :—

1st. The material is extended on the convex side and com-
pressed on the concave side.

2d. In solid rectangular sections the line of invariable fibres
(or neutral axis) is at half the depth of the section.

- 3d. The elongations or compressions increase as their distance
from the neutral axis.

4th. The resistance is the same whether the neutral axis is at
the middle of the depth or at any other point.

5th. The lever arm of the resistance is $ of the depth.

We here find some of the essential principles of the resist-
ance to flexure, as recognized at the present day; but the two
last are erroneous. As hereafter shown, the neutral axis is at
half the depth, and the lever arm is § of 4 the depth.

Leibnitz’s theory, given in 1684, was the same as Mariotte’s.
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78.—JAMES BERNOUILLDPS THEORY was essentially the
same as Mariotte’s, except that he stated that extensions and com-
Pressions were not proportional to the stresses. “ For,” said he,
“if it is true, a bar might be compressed to nothing with a
finite force.” On this point see Article 16. He was the first to
give a correct expression for the equation of the elastic curve.

79. PARENT'S THEORY.—Parent, a French academician
of great merit, but of comparatively little renown, published, in
1713, as the result of his labors, the following principles, in
addition to those of his predecessors :—

1st. The total resistance of the compressed fibres equals the
total resistance of the extended fibres.

2d. The omgm of the moments of resistance should be on
the neutral axis.

By the former of these principles the position of the neutral
axis may be found, when the straining force is normal to the
axis of the beam ; and by the latter he corrected the error of
Mariotte and Leibnitz ; showing that the ratio of the absolute to
the relative strength is as sz times the length to the depth
instead of three, as will be shown hereafter.

80. couLoMRB, IN 1773, PUBLISHED the most scientific
work on the subject. of the stability of structures which had
appeared up to his time. He deduced his principles from the
fundamental equations of statics, and generalized the first of
the principles of Parent, which is given above, by saying that
the algebraic sum of all the forces must be zero on the three
rectangular axes. This establishes the position of the neutral
axis when the applied forces are oblique to it, as well as when-
they are normal. He also remarked, that if the proportionality
of the compressions and extensions do not remain to the last, or
to the point of rupture, the final neutral axis will not be at the
centre of the section.

81. MoDULUS OF ELASTIOrTY.—In 1807 Thomas Young
introduced the term modulus of elasticity, which we have de
fined as the coefficient of elasticity in Article 5. After this
several writers, among them Duhamel, Navier in his early
writings, and Barlow in his first work, stated the erroneous prin-
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ciple, that the sum of the MOMENTS of the resistances to compres-
8ton equalled those for tension.

89, IN 1824 NAVIER PUBLISHED the lectures which he
had given to 2 Ecole des Ponts et Chaussées, in which he estab-
lished more elearly those principles of elastic resistance, and
resistance to rupture, which have since his day been accepted
by nearly all writers. He was the first to show that when the
stress is perpendicular to the axis of the beam, the neutral axis
passes through the centre of grawity of the transverse sections.
His most important modifications in the analysis was in making
ds=dzux, or otherwise, considering that for small deflections the
tangent of the angle which the neutral agis makes with the
original axis of the beam s so small compared with unity that
¢t may be neglected ; and also, that the lever arm of the force
remains constant during flexure. These principles we have
used in Chapter - V. He resolved many problems not before
attempted, and became an eminent author in this department
of science:

83. TaEE commoN THEORY.—The theories of flexure and
of rupture which result from these numerous investigations, I
will call, for convenience, the common theory. It consists of
the following hypotheses :—

1st. The fibres on the convex side are extended, and on the
concave side are compressed, and there are no strains but com-
pression and extension.

2d. Between the extended and compressed fibres (or elements)
there is a surface which is neither extended nor compressed, but
retains its original length, and which is called the neutral sur-
face, or in reference to a plane of fibres it is called the neutral
3d. The strains are proportional to their distance from the
neutral axis.

4th. The transverse sections which were normal to the neutral
axis of the beam hefore flexure, remain normal to the neutral
axis during flexure.

5th. A beam will rupture either by compression or extension
when the modulus of rupture is recached.

6th. The modulus of rupture is the strain at the instant of
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rupture upon a unit of the section which is most remote from
the neutral axis on the side which first ruptures. This ie
called .

It is found that this theory does not conform well with the
results of experiment.* For instance, if a cast-iron beam be
supported at its ends, and broken by a weight placed at the
middle, it appears from the theory above given that the beam
would break when the strain (/2) on the extreme fibres equals
the value of the tenacity (7') of the metal—or 16,000 Ibs.
(See page 58.) But the value of /2 as found from the formula, 22

=3 % which is deduced in accordance with the above theory,

and is given in Chapter VL, is about 35,000 1bs. (See the table
in the Appendix.) This value is less than the crushing strength,
C, of the metal—or 96,000 lbs. (See page 58). Hence the
value of R is nearly 2} times that of 7, and more than § that
of C.
Again, we have for Ash
T = 17,200 pounds;
C= 9000 ¢« ;
R =12000 « ;
. .. I = 1% C and % T nearly.
* Mosley’'s Mech. and Arch., p. 557. ¢ The elasticity of the material has
been supposed to be perfect up to the instant of rupture, but the extreme fibres
are strained much beyond their elastic limits before rupture takes place, while

the fibres near the neutral axis are but slightly strained, and hence the law of
proportionality is not mamtmned, and the position of the neutral axis is

changed, and the sum of the moments is not accurately 1—;—I(see equation 170).
1

To determine the influence of these modifications we must fall back upon ex-
periment, and it has been found ¢n the case of rectangular beams that the error

will be corrected if we ta.ke% T (= R) instead of T, where m is a constant

depending upon the material.”

‘Weisbach, vol. ii., 4th ed., p. 68. foot-note, says, ‘‘ Excepting as exhibiting
approximately the laws of the phenomena, the theory of the strength of mate-
rials has many practical defects.”

Maj. Wade, in his Report to the Ordnance Department, p. 1, says:—* A trial
was made with cylindrical bars in place of square ones. These generally
broke at a point distant from that pressed, and the results were so anomalous
that the use of them was soon abandoned. The formula by which the strength
of round bars is computed appears to be not quite correct, for the unit of
strength in the round bars is uniformly much higher than in the square bam
cast from the same iron.”
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A similar result is found for other materials. Hence gener-
ally, the value of & for any given material is between those of
7 and C, but there is no known relation between them which
would enable us to determine the value of one from the other
two. The values of 2 in the tables were deduced from experi-
ments upon rectangular beams, as will hereafter be shown;
and hence, if the common theory is correct, 2 should equal the
value of the lesser resistance, whether it be for compression or
extension ; but it does not. This discrepancy between theory
and the results of experiment, led Mr. Barlow to investigate the
subject farther, and it resulted in a new theory which he calls
“Resistance to Flexure”—an expression which I consider un-

fortunate, as it does not express his idea. “Longitudinal

Shearing”” would express his idea better, as will appear from
the following article :—

84. BARLOW’S THEORY.—A ccording to the common theory
the resistance at a section is the same as if the fibres acted in-
dependently of each other, and the transverse section remained
normal to the neutral axis. But Barlow supposed that in order
to keep the transverse sections normal to the neutral axis,
the. consecutive longitudinal planes of fibres must slide over
each other, and to this movement they offer a resistance. (This
point is discussed in Chapter IX.)

He presented his view to the Royal Society (Eng.), in 1855,
and it has since been published iun the C%vil Engincer and
Architect's Journal, vol. xix., p. 9, and vol. xxi,, p. 111.*¥ The
subject is there discussed in a very able and thorongh manner,
and althongh he may have failed to establish his theory, vet the
results of his analysis seem to agrce more nearly with the re-
sults of experiment than those obtained by any other theory
heretofore proposed. ‘

It is admitted in this theory that a beam will rupture when
the stress upon any fibre equals its tenacity, or its resistance to
compression, as the case may be. But, on the other hand, when
the adjacent fibres are unequally strained, as they are in the

case of flexure, it requires a greater stress to produce this.

* Civ. Eng. and Arch. Jour., vol. xix., p. 9, Barlow says that the strength
of a cast-iron rectangular bar, as found from existing theory, cannot be recon-
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strain than it would if the fibres acted independently, according
to the previously assumed law. This, Barlow
makes evident from the following example :—

| If a weight P, Fig. 23, is suspended on
a prismatic bar, BCEF, all -the fibres will
be equally strained, and hence equally elon-
gated.

But if the bar ABCD be substituted for
the former, and the weight P acts upon a part
of the section, as shown in the figure, it is evi-
dent that all the fibres will not be equally
strained, and hence will not be equally elon-
gated ; and if the force P was just suflicient to
rupture the bar B CE, it will not be suflicient
to rupture the bar AB(CD, although P acts

_directly upon the same section, for the cohe-

Fra. 23. sion of the particles along F£ will not permit

the fibres next to that line to be elongated as much as if the

part AFFED were removed; and these fibres will act upon

those adjacent, and so on, until they produce an effect upon BC.

From this we see that it takes a greater weight than £ acting

upon the section £'C to produce a strain 7" per unit of section,

when the part A DEFis added. It is also evident that if the

section of A BCD is twice as great as F.BCL, it will not take
twice P to rupture the fibres on the side BC.

A phenomenon similar to this takes place in transverse
strain. One side is compressed and the other elongated ; and
the fibres less strained aid those which are more strained by
virtue of the cohesion which exists between them, and it takes
a greater load to cause a strain, 7| longitudinally upon the
fibres on the convex side, or of ¢ upon those on the concave
side, than it would if there were 1o cohesion between the hori
zontal laminz.

ciled with the results of experiment if the neutral axis be at the centre of th;,
sections. He then proceeded to show hy experiment that the neutral axis is
.at the centre, and then remarked that the formula commonly used for a beam
. bd: . .
supported at the ends and loaded in the middle, or P = 32« Z—-;—l—— did not give
half the actual strength if 7’ is the tenacity of the iron. He then proceeds
to point out a new element of strength, which he calls ‘‘ Resistance to
Flexure.”
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" This may be illustrated by a pile of boards, Fig. 24. Sup-

Fia. 24.

pose that the boards are very thin and perfectly smooth. When
they are bent they will retain their original length, and will
project past each other as shown in the figure. Also if before
they were deflected straight lines were drawn with a pencil or
otherwise perpendicularly across the pile, and then the whole
deflected, it will be found that the lines will not remain contin-
uous but will be broken. If now there be considerable friction
between the boards, those on the concave side will be com-
pressed, and those on the convex side will be elongated ; and
the cross lines will be more nearly continuous than before.
Still more, if the successive layers be infinitely thin and held
together by cohesion, the elements on the concave side will be
still more compressed and those on the convex more extended
than-they were in the former case, and the cross lines will
remain straight and normal to the neutral axis, as shown
in Fig. 25. '

Fia. 25,

There is, then, at the time of the rupture of a beam, accord-
ing to this theory, a tensile strain on the extended fibres, and
‘a compressive strain on the other fibres, and a longitudinal
shearing strain between the fibres, due to cohesion. We think,
however, that too much importance is given to the longitudinal
shearing as an element of strength.

Barlow’s Theory consists of the following hypotheses :—
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1st. The fibres or elements on the convex side are extended,
and on the concave side compressed.

2d. There is a neutral surface, as in the common theory.

3d. The tensile and compressive strains on the fibres are pro-
portional to their distances from the neutral axis.

4th. That in addition to these there is a * Resistance to
flexure ” or longitudinal shearing strain, which consists of the
following principles :—

a. It is a strain in addition to the direct extensive and com-
pressive forces, and is due to the lateral cohesion of the adjacent
surfaces of fibres or particles, and to the elastic reaction which
ensues when they are unequally strained.

b. It is evenly distributed over the surface, and consequently
within the limits of its operation its centre of action will be at
the centre of gravity of the compressed or of the extended
section. This force for solid beams Barlow calls ¢, and for T
or I sections, or open-built beams, it is easily deduced from the
following principle :—

c. It is proportional to and varies with the ‘nequality of
strain between the fibres nearest the meutral axis and those
most remote.

From this it appears that if @’ is the depth of the horizontal
flanges of the X section, and d, the distance of the most remote
fibre from the neutral axis, then the resistance to flewure of the

Jlanges will be ¢ g— and similarly for other forms.

5. Sections remain normal to the neutral axis during flexure.

6. Rupture of solid beams takes place when the strain on a
unit of section is 7" 4 ¢, or C + ¢, whichever is smaller, or
rather, whichever value is first reached.

Prof. Barlow made no effort to show the value of the clastic
resistance of longitudinal shearing in a beam under flexure.
The effect of this resistance in the flexure of beams will be
noticed hereafter.

83. TRANSVERSE ELASTICITY.—If a beam were destitute
of elasticity it could not be bent. If it had longitudinal elas-
ticity only, it could be bent by causing the fibres on the convex
side to be elongated and those on the concave side to be shortened,
as explained in the previous articles. If it had no longitudinal




FLEXURE AND RUPTURE FROM TRANSVERSE STRESS. 86

elasticity, but a transverse elasticity, it could be bent by forcing
the successive material sections past each other. Let 4.5, Fig.
26, represent a beam which is supported at its ends, and which

Fia, 26.

is supposed to consist of a succession of perfectly nonelastic
parts, as a, b, ¢, etc., and that these parts are joined by infinitely
thin elastic pieces. If a weight P be placed upon the beam, it
will cause a deflection similar to that shown in the figure,
excepting that the visible effect is greatly exaggerated ; but the
successive sections will set past each other a small amount. If
now we suppose that the transverse elasticity is uniform and
countinuous from end to end, it seems evident that the deflection
will take the form of that shown in Fig. 27, in which the effect

Fia. 27.

due to the elongation and compression of the fibres is supposed
to be entirely eliminated. In this case the upper and lower
sides are straight from the centre to the ends, but they form an
angle with each other at the centre.

It will be shown in Chapter IX, that for amorphous bodies
(called isotropes), in which the elasticity is the same in all di-
rections, that the coefficient of the transverse elasticity is £ of
the coefficient of longitudinal elasticity, or ¢ = ¢ £. Such
bodies, however, are more ideal than real. The elasticity is
generally different in different directions.* ‘

* See pp. 16 and 17.
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§6. REMARKS UPON THE THEORIES.—For scientific pur-
poses it is desirable to determine the correct theory of the
strength of beams, but the phenomena are so complex that it is
not probable that a single general theory can be found which
will be applicable to all the irregular forms of beams used in
practice. Although Barlow’s theory appears plausible, yet ac-
cording to principle ¢ the resistance to flexure, ¢, cannot be
uniform over the surface, as stated in principle b, because the
proportionality of the elongations and compressions do not con-
tinue up to the point of rupture. The common theory is faulty
beyond what has already been said, in the I section ; for in the
upper and lower portions the strains on all the fibres are
not proportional to their distances from the neutral axis, to
realize which the material should be continuous from the neu-
tral axis to the remotest fibres. Aud Barlow’s theory is defec-
tive in the same case, on account of the peculiar strains upon
the fibres at the angles where the parts join. For rupture,
then, we can use these theories to ascertain general facts, and
make the results safe in practice by using a proper coeflicient
of safety; but for flexure the common theory is approximately
exact if the elastic limit is not passed, and this is fortunate, for
the conditions of stability should be founded npon the elastic
properties rather than on the nltimate strength of the material.
For the rupture of rectangular beams the common theory will
be sufficiently exact if the value of & is used instead of 7" or €
in the formulas.

POSITION OF THE NEUTRAL AXIS.

87. POSITION FOUND EXPERIMENTALLY.—According to
Galileo’s, Mariotte’s, and Leibnitz’s theories, the neutral axis is
on the surface opposite the side of rupture.

Professor Barlow made the following experiments :—He took
a cast-iron beam and drilled holes in its sides, into which were
fitted iron pins. He carefully measured the distance between
the pins, before and after flexure, by means of a micrometer,
and thus found that in solid cast-iron beams bent by a normal
pressure the neutral axis passes through the centre of ‘the sec
tions (Ctv. Eng. and Arch. Jour., vol. xix., p. 10). He also




FLEXURE AND RUPTURE FROM TRANSVERSE STRESS. 87

made the same kind of an experiment on a solid rectangular
wrought-iron beam, and with the same result (Civ. Eng. and
Arch. Jour., vol. xxi., p. 115).

Some years previous to the preceding experiments, he took a
bar of malleable iron and cut a transverse groove in one side,
into which he nicely fitted a rectangular key. When it was
bent, the fibres on the concave side were compressed, and the

groove made narrower, so that the key would no longer pass:
through, and thus he showed that the neutral axis was between,

% and } the depth of the beam from the compressed side (Bar-

low’s Strength of Materials, p. 330 ; Jowr. Frank. Inst., vol.-

xvi., 2d series, p. 194).
Experiments made at the Conservatoire des Arts et Métiers,

in 1856, on double T sections, show that it passes through the

centre of the sections (Morin, Résistance des Matériauz, p.
137). And experiments made at the same time on rectangular
wooden beams showed that it passed at or very near the centre
of gravity of the sections.

In these experiments.the elasticity of the material was not
seriously damaged by the strains. To render them complete,
the strains should have been carried as near to the point of rup-
ture as possible.

. Louis Nickerson, C. E., of St. Louis, made some experiments
upon glass by means of polarized light, from which he deduced the
following as applicable to that and similar amorphous bodies :—

The necutral axis—as exhibited by polarized light,—from the
cohesion of material or other cause is extended to a breadth,
and cannot become a true line until, in reference to the cohe-
sion, the tensile and compressive forces are infinite. Also that
its longitudinal direction, like the direction of lines of strain, is
not an arbitrary one, but resultant from the relative qualities
and quantities of all the forces in the beam—its evident place
in physics being that of still water between opposing eddies or
vortices.

Results obtained showed that the neutral axis is a flexible
line, or plane, truly parallel to the top and bottom: sides of the
rectangular bean and passing through the centres of gravity of
its sections only when the load is evenly distributed from end
to end, or when the beam is infinitely long, and that, when
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there is a local pressure, the neutral axis is more or less gov-
erned in its direction and form by the strain passing from the
point of local pressure towards the points of support.

88, POSITION DETERMINED ANALYTICALLY.—We know
from statics that the algebraic sum of all the forces on each of
the rectangular axes must be zero for equilibrium ; hence, if the
deflecting forces are normal to the axis of the heam, the sum of
the resistances to compression must equal those for tension.

1st. Suppose that the coeflicient of elasticity for compression
equals that for tension. Then will the compressions and exten-
sions be equal at equal distances from the neutral axis. In
Fig. 28, let &, be the strain on a unit of fibres most remote
from the nentral axis on the compressed side, and d, = the dis-
tance of the most remote fibre on the same side ; then,

JZ— = & = strain at a unit’s distance from the neutral axis.

Let %,, ,, %,, &c., be the sections of fibres on one side of the

neutral axis, at distances of :
Yis Vas ¥sy &cC., from the axis, and
k,/6, k", &c.,and v, y", y"', &c., corresponding quan-
tities on the other side.
Then s (k,y, + &y, + by, +&e.) =s Fy + 'y +E"y" +&e.),
or, iy, + gt byt &o.—(Fy + By + By +&e) = 0,
or, Zhy = 0. ...ttt (35)
or the neutral axis passes through the centre of gravity of the
sections.*

If the resistance to compression is greater than for tension,
the neutral axis will be nearer the compressed side than when
they are equal.

2. Suppose that the coefficient of elasticity is not the same
for tension as for compression.

* The analytical expression for the ordinate to the centre of gravity is

?_klyx + kays + &e k'Y +k’y’ + &e., ?_‘[/‘yd_yf'
STkt b+ & + K + k'+ &e orr = /M

Ifffydyda: =0, ¥=0.
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Let Fig. 28 represent the beam. Suppose that the sections
CM and EF were parallel
before deflection. If through
XV, the point where EZ in-
tersects the neutral axis, K H
is drawn parallel to CM, the
ordinates between EZF and
KA H will represent the elon-
gations on one side, and the
compressions on the other,
for those fibres whose origi-
nal length was LX.

Let ! = LN,

a = ke = the elongation of a fibre at % ;
2 = a pulling or pushing force which would produ(,e a3
2 y = Nk = distance of any fibre from the neutral axis ;
% = section of any fibre; :
E; = coeflicient of elasticity for tension; and

Fi1a. 28.

E, = “« « % compression.
From equation (3) we have, - Ji&- ENX
Ekea
R LETTEETTTRRPPY ceriaees (36)

Baut a is directly proportional to its distance from the neutral
axis ; hence, if ¢ be a constant quantity, whose value is or is not
known, we shall have A = ¢y*

cE,l'y

Or, if. we adopt the same notatlon as in the preceding case, we
shall have for the total force tending to produce extension,

p = E; ky+ry+hy+&e). ..., 37
Similarly for compresswn
zp = c? Ey +2'y +¥"y" +&c). ... .(38)

Placing these equal to each other and we have,
E, (l:,yl+7c,y,+/?:,y,+&(,) = E, Ky +EF'y' +E"y" +&c.)
or, in the language of the integral calculus,

E, Sydyde = E, 3., ydydz,............ (39)

&

* Comparing this equation with equation (46) gives 6 = —
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in which ¥ is an ordinate and @ an abscissa. Equation (39)
enables us to find the position when the form of section is
known. In most cases, however, the reduction is not easily
made.

Ezample.—Suppose the sections are rectangular.

4 b € res=4c

x ........... gi:a,nnd

l.
B p ¥ = AE for the superior limit,
Fie. 28a. Then equation (89) becomes

b v /] ~y .
’ d‘ yayde = jd ydydz, which reduced becomes
0 fo J 0o Jo '

wf=i[es]
d

¥y TF Jar e (40)
Ifa:l,y:g
a=®,y=0
a=0,y=d.

If y is known in equation (40), the ratio of the coefficients of elasticity may
easily be found ; for, we have from (40)

— e
a=(% )= %’. ...................... @1
3d. Suppose that the deflecting force is not perpendicular to
the axis, and £, = £, = E. ‘

Let & = the angle which P makes with the axis of the beam
Fig. 29; ’

P, = P cos 6 = the com-
ponent of P in the direc-
tion of the axis of the
beam ;

P,= P sin 0 = the com-
ponent of P perperdicular
to the axis of the beam ;

Fia. 29. % = the distance of the
neutral axis from the centre of gravity of the section 4B, and
K = the transverse section.
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The whole force of compression equals the whole force of
extension, equations (37) and (38).

. Pcos 0 + %’j:/:ydydm= &—gfjfyydydw

But the ordinate to the centre of gravity is (see foot-note on

page 88),
v ds 2 vy e

. Poosb= %11{75
orh = %(0080 ...................... (42)

If 0 = 90°, A = 0 as before found.
If 6 = 0 there is no neutral axis, for the force coincides with
the axis of the beam. The equation will show the same result,

if the value of ¢ = ; = %, equation (43), is substituted in the

formula, for then p would be infinite, for ¢ = 0, and % becomes
infinite.

4th. Let the law of resistance be according to Barlow’s theory
of flexure, and the deflecting forces normal to the axis of the
beam.

Using the same notation as before, also

d, = the distance of the most remote fibre from the neutral

axis, and
¢ = the coefficient of longitudinal shearing stress.

Then ¢ /;”::: dy = the resistance to shearing for tension,
and ¢ f e dy = the resistance to shearing for compression,
-

and, proceeding as we did to obtain equation (39), we have

ZT': /:) " dyde + ¢ J;”mdy =§/‘ / _oym dyde + ¢ f _:g dy.(43)

Examples.—Let the sections be rectangular, b = the breadth, d = the depth.
Then Eq. (43) becomes



92 THE RESISTANCE OF MATERIALS.

$T8 4 a0 = ob @—d) + 9 @ — d)
1

or,(¢ +2%‘f)(2d-—d)=0;

Ta,

Cody=4dor, d, = —

2

the former only of which is admissible.
If the value of ¢ were less than that of 7', the

| ——

}

id,

i d
{

1 I

Fia. Q.

former would be used instead of the latter in
Eq. (43).

If the section is a double T, as in Fig. 30,
with the notation as in the figure, ¢ will be used
in finding the resis'ance of the vertical rib, and

of the lower

according to Article 75, ¢dd,d
— W1

flange, and ¢ :ii’—of the upper flange.
1

It appears from these several cases that the neutral axis
passes near the centre of gravity in most practical cases, and it
will be assumed that it passes through the centre unless other-

wise stated.
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CHAPTER 1V.
SHEARING STRESS.

89.—GENERAL STATEMENT.—Two kinds of shearing stress
are recognized—longitudinal and transverse—both of which
have been defined in Article 2. Materials under a variety of
circumstances are subjected to this stress—such as, rivets in
shears ; the rivets in riveted plates; pins and bolts in spliced
joints; beams subjected to transverse strains; bars which are
twisted ; and, in short, all pieces which are subjected to any
kind of distorsive stress in which all parts are not equally strain-
ed. In the first examples above enumerated, all parts of the
section are supposed to be equally strained, but the straining
forees act in opposite directions. Shearing may take place in
detail, as when plates or bars of iron are cut with a pair of
shears, when only a small section is operated upon at a time;
or it may be so done as to bring into action the whole section at
a time, as in the process of punching holes into metal, where
the whole convex surface of the hole is supposed to resist uni-
formly.

90.—MODULUS OF SHEARING STRENGTH.—The modulus
of resistance to shearing is the resistance which the material
offers per unit of section to being forced apart when subjected
to a shearing stress.

This we call S. The total resistance to ultimate shearing
has been found to vary directly as the section; so that if
K = the area of the section subjected to this stress the total re-
sistance will be

The value of S has been found for several substances, the
principal of which are as follows: —
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MeTars.
8 in 1bs, per square
inch.
Fine cast steel *...... cesscectnanias ceeaees 92,400
Rivet steel +......ovviriiieienenennns cenes 64,000
Wroughtiron*............oiiiiiiit, 50,000
Wrought-iron plates punched }.............. 51,000 to 61,000
‘Wrought iron hammered scrap punched §. .. .44,000 to 52,000
Castiron......oooviiniiiiniiiiiiieennns 30,000 to 40,000
Copperf........coovvvvnin. e 33,000
‘Woop.

With the fibres.
‘White pine..... Ceerecetsesnstsenerevenes . 480
Spruce....... . 470
Fir . i i e reeenaae 592
Hemlock **. . ... ... oo 540
08k, eeeeee 780
P 1,200

_ Across the fibres.
Redpine...coovvviiiiinnninnennnnans 500 to 800
Spruce ....oiiiiiiiii i e 600
Larcht+t .. ... coviiiieinnna.n. e 970 to 1,700
Treenails, English oak $}............... . 3,000 to 5,000

Jt will be seen from these results that the shearing strength
of wrought iron is about the same as its tenacity ; of cast steel
it is a little less than its tenacity ; of cast iron it is double its
tenacity, and about $ its crushing resistance; and of copper it
is about # its tenacity.

The following table, which gives the results of some experi-
.ments upon punching plate iron, also illustrates the law of re-
gistance, and gives the value of § for that material.

* Weisbach Mech. and Eng., vol. i., p. 407.
+ Kirkaldy’s Eap. Ing., p. 71.
$ Proc. Inst. Mech. Eng. England, 1858, p. 76.
§ Proc. Inst. Mech. Eng. England, 1858, p. 73.
| Stoney on Strains, vol. ii., p. 284.
9 Barlow on the Strength of Materials, p. 24.
** Engineering Statics, Gillespie, p. 33.
4 T'redgold’s Carpentry, p. 42.
13 Murray on Skipbusiding Wood and Iron, p, 94.-
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TABLE
Of Experiments on Pumching Plate Iron.*

Diameter of the | Thickness of the | Sectional area cut | Total on |Pr per sq
hole, plate. through. the punch, inch of area.
Inch. Inch. Square inch. Tons. Tons. (Gross.)

0.259 0.437 0.344 8.384 24.4
- 0.500 0.625 0.982 26.678 7.2
0.750 0.625 1.472 84.768 23.6
0.875 0.875 2.405 55.500 23.1
1.000 1.000 3.142 77-170 4.6

These results give for the value of § from 51,000 1bs. to
61,000 1bs. The total resistance varies nearly as the cylindrical
surface of the hole.

APPLICATIONS.

91.—PROBLEM OF A TIE-BEAM.— 70 find the relation be-
tween the distance A B, Fig. 31, and the depth of a rectangu-
lar beam below the notch, so that the total shearing strength
8hall equal the total tenacity,

Let 2 =

d=
k=
K=
T =
S =

i

Fia. 81,

AB = the distance of the bottom of the notch from
the end,

the remaining depth of the beam,

the section of 4 B,

the section below A4,

the modulus of tenacity, and

the modulus of shearing strength :

* Prooceedings Inst. Mech. Eng., 1858, p. 76.
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Then the condition requires that
TK =Skhbutk: K ::h:d

kA _ T
ETaTT
74
coh= -5
b .
Ezample.—For Oak ST’_, = 17@— = 15§ nearly ; hence AB should be about
154 times the remaining depth. ’

9. —RIVETED PLATES.— (Given the diameter of the rivets ;
it 18 required to find the distance between them from centre to
centre, so that the strength of the rivets for a single row shall
equal the strength of the remaining iron in the plates.

Let d = the diameter of the rivets,
¢ = the distance between them from centre to centre,
% = the section of the rivet,
K = the remaining section of the plate, and
¢t = the thickness of the plate.
For iron 7' = §; hence, proceeding as above, we have
k ird . 0.7854a"
f——t(c—d) = e C = ——t + d.
Ezamples.--If t = } inch, and d = 4 inch;
then ¢ = 1.2854, inch,
°=2_ o6

a.!_ld

If ¢ = } inch, and d = § inch; then ¢ = 0.8168 and ° = g

nearly the value given by Fairbairn for the strength of single riveted plates.
See Article 27. To insure this strength the rivet should fit tightly in the hole.

93. —TRANSVERSE SHEARING IN BENT BEAMS.—In Figs.
24 and 25 we considered only the elongations and compressions
of the fibres, but in transmitting the strains from the middle to
the supports there may be a vertical force at every vertical section,

j@ [ ﬁf’v\r’?

3

= 0.541, which 1s

>r~—> q
be——
-

le—

ke

le—r
e

b

Fia. 82 a. Fia. 82 0.
as is indicated by Fig. 26, and which may be shown in a gen.
eral way from the equations of statics.
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In order to slmplify the problem, suppose that all the bend-
ing forces are in a plane, and let

P, P, P, &c., be the bending forces s

F F, F, &c be the internal forces in ‘anysection of a beam,
. each of which is the resultant of all the for-

< . ces concurring at that point.
a, a, o, &c,, the angles. which P, P,, &c., make with the axis
of ,
a, a,, a,, &c., the angles which 7, F, F;, &c., make with the
axis of «,and yan axis perpendlcular tox.
- Then the principles of Statics give the following equations:
ZPcose + T Fcosa =0
2Psma+2‘ﬁ'mna—0 }(44)
3(Py cos a— P sin o) + = (Fy cos a — Fle sin a) =
Let @ coincide with the axis of the beam, and let all the forces
be vertical ; or a = 90° or 270°; then

(0 P zFceosa =0
N S) DU >+ P+ 3Fsina=0 (44a)
() JE 24+ Pr+ ZFycosa—ZFrsina=0 .

The first of these eqnatlons shows that the sum of the resist-
mg forces parallel to the axis is zero; or that the total compres-
sion equals the total tension. This is equation (85) in another
form. The second shows that the sum of the bending forces
equals the sum of the vertical components of the resisting forces.
I we let S, represent the total strain, this equation be(,omes
2P = =F sin a =S8,, which is the result sought.

That is, when the bending forces of a beam act vertically to
the awxis of the beam, the algebraic sum of all the bending forces
between one end and the section considered eguala the vertical
shearing stress in that section.

The following are some of the more simple cases:

1. Beam fixed at one end and loaded with a weight P at the
freeend, Fig. 86.............ooviiiiiiiiii., S, =P

2. Beam fixed at one end and loaded uniformly, Fig. 38,
(load being w per unit of length)................... S, = wx

8. Beam supported at its ends and loaded with a weight P at
the middle, Fig. 40.................coiiial. S,=%r

4. Beam supported at its ends and uniformly loaded, Fig. 42,

8, = 3wl —ww..
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5. If a beam is supported at its ends, and loaded with several
weights P,, P,, P, etc., as in Fig. 33 b we have for the shear
tng stress.

between the end and P, = V ;

between P, and P, =V-P,;

between P, and P, =V-P —-P,;

between P, and P, =V—-P,—P,—P,;ete.

If the weights are equal to each other = P, we have P = P,
= P, = P, etc.; and if there are n of them, and they are sym-
metrically placed in reference to the centre of the beam, we have

V= inP.

If n is even, we have, at the centre of the beam, the
transverse shearing stress = 3nP — nP = 0
and if n is odd, there will be a weight at the centre, and each
side of the central weight we have
transverse shearing stress = 3nP — 3 (n L 1) P=4+3P.

These values are evidently independent of the form or mag-
nitude of the beam. The consideration of the latter enters
when we wish to proportion the beam to resist the former.

The development of the third equation gives

P .z + P, o, + &e, + Fy, cvs a, + Fy, cos a, + &e.
—F ' sina, — F,a" sina, + &e............ PRy =0.

Since @, ,, dec., @', @', dbe., are linear quantities, the differ-
-ential of @, equals the differential of z, ; hence we have

dz, = dz, = dx, = &ec.. .. = do’ = dz’’ = &e.

Similarly

-~

dy, = dy, = &e
Hence, by differentiating the above equation, we have
ZP de — ZFsinade + 2F cos a dy = 0.

or%—;/zﬁ'cosa = >Fsna—=P.

But the first of Eqgs. (44a) reduces this equation to zero.

2. SP =3Fsina = 8,
‘That is, the vertical shearing stress in a beam when the ap-
. plied forces are wertical s equal to the first differential cocfi-
ciewt of dhe mament of the applied forces.
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For example, when a beam is fixed at both ends and loaded
uniformly, the moment of the applied forces is

% wx (4x — 8l)
as given in Eq. (112). Hence, according to the above rule we
have

S, =3wl —

‘When the bending moment has an algebraic maximum, the
moment is greatest where the shearing stress is zero; for the
first differential coeflicient of the moment of applied forces is
the value of the shearmg stress, and this placed equal to zero
and solved for # will give the point.of greatest stress.

The sum of the moments may be represented by a resultant
moment. ) ' .

Let Po' =2Pe;a’ s Fsina=2Fusina;and F y =
X Fzcosa. Then the second of Eqs. (420) becomes

Po—a2'ZSFsina=Fvy
o, PP’ —a" S, =F'y
o, PP —&)=Fy
hence the shearing stress forms a couple with the applied force,
or resultant of applied forces.

If the origin of moments be taken in the section considered,

&'’ will be zero, and we have

. Po =Fy.
or more generally
Pz =3Py

which is the fundamental equation for flexure and rupture of
beams under transverse strains.

94.—BENDING DUE TO TRANSVERSE SHEARING.—In
order to determine the amount of deflection due to the loading
and transverse elasticity, it is necessary to know the law of the
distribution of the shearing strain over the cross section. When
the body is sheared off without deflection, as in the case of
rivets, and other cases where the shearing force acts on the
plane of resistance, the stress is uniformly distributed over the
cross section; but this is not necessarily the case when the
the shearing stress is accompanied by flexure.
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- It will be shown in Chapter IX. that the shearing stress is
zero at the upper and lower surfaces, and increases from. these
points towards the neutral axis, at which point it is 8 maximum.
. It will be found in rectangular beams that the decrease of
the shearing stress from the neutral axis varies as the square of
the ordinate—Equation (210)—and hence the shearing stress
may be represented by the area of a common parabola, the
diminution being represented by the external part of the same

parabola.
Hence, if
b = the breadth of a beam,
d = the depth,
A = the area of a section = bd,
- ¢ = the length,

E, = the coefficient of transverse elasticity,
P = the applied weight, and
4, = the deflection ; we have
$E,bd = the total resistance to tran.sverse‘sheiring.

. The deflection will evidently increase directly as the length ;
hence, if the beam be fixed at one end and the weight be ap-
plied at the free end

4 —*—E“ .
If the beam be supported at ms ends and loaded at the
mlddle, we have ,
' - 3 P. 3! 30
A T3 E, *AE
If the beam be supported at its ends and uniformly loaded,
‘we have

_/w(iwl—'w:v)dv 8wl _ 3wy
34 E, T 164 E, 164 E,

"The total deflection depends upon the elongation and com-
‘pression of the elements, as well as upon transverse shearing,
‘and hence involves both Z and Z,. By comparing the values
of the deflections above given, with those of the corresponding
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‘cases in the next chapter, it will be seen that the deflection due
to transverse shearing has but little relative effect for long
"beams, but for very short ones it becomes the more important
-element.

. ExXAMPLE.—Required the deflection of a rectangular beam due to trans-
.verse shearing which is supported at its ends and loaded uniformly over its
whole length, when » = 4 inches, d = 10 inches, ! = 8 feet; w (the load per
foot of length) = 500 pounds, and E, 45,000 pounds.

Weisbach says: “The coefficient of transverse elasticity is
‘assumed to be § £ ” (Weisbach, Mechanics of Engineering,
“Vol. I, p. 522). This is nearly § Z, the value found' theoreti-
‘cally for amorphous bodies, but for fibrous bodies, such as wood,
the transverse elastieity is not the same in the different directions
‘of the layers, so that it has not a specific value. ‘

There is a longltudmal shearing ats every point of a bearh
‘where there is transverse shearmg, but the deflection which
arises from it is small. The analysis of these cases is reserved
for Chapter IX., since a portion of it depends upon the analysis
for flexure.

935. SHEARING RESISTANCE TO TORSION.—When a solid
is twisted the consecutive transverse sections of elements slip
‘over each other, and for small angles of torsion, such as are
only admitted in practice, the law of strains is comparatively
simple, as is shown from theoretical considerations, and which
is confirmed by experiment. This law is: the strains increase
directly as the distance from the axis of the piece, as stated in
Chapter VIIL, and is applicable to wood and other ﬁbrous and
granular sohds

But when the elastic limit is passed the case becomes very
complex. All the elements which orlo'mally were rectilinear
become helices, except those at the axis. The outer elements
thus become elongated, and by their elastic resistance produce
compression upon those near the axis. There will also be a
lateral contraction of those elements which are elongated. The
transverse sections which were originally plane will become
warped. As the strain is increased the outer elements actually
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slip over each other, and thus lose, in a great degree, their
power of resistanee, and throw greater strains upon those nearer
the axis, until finally the elements are sheared apart. During
this process, shearing strains may exist in any direction—longi-
- tudinally, lateral, and tangential.

In the more ductile metals rupture may take place slowly,
and the final fracture be nearly a plane which will be perpen-
dicular to the axis of the piece; but in brittle metals, such as
highly tempered steel and most qualities of unmalleableized
cast-iron, rupture takes place suddenly with a “snap” when
under strain, and with only a small amount of torsion. In
such cases the fracture is irregular and oblique to the axis.
There is little or no appearance of shearing, for rupture takes
place with only a small amount of shearing.

The conditions of ultimate rupture do not appear to be gov-
erned by definite mathematical laws; and hence it might ap-
pear useless to subject them to Aypothetical laws ; but the laws
which are assumed are sufticiently exact for practical cases when
the material is not overstrained.

Remark.—It is fortunate that for practical purposes it is not necessary to
know the exact condition of the strains within a piece which is used in a
structure, for it is impossible to construct an equation which will represent
every possible case with mathematical exactness. Bodies are infinitely diver-
sified. Some may be subjected to internal strains from the process of manu-
facture. These may be caused by forging some parts more than others; but
especially by unequal cooling. The effect of an external load may be to in-
crease the intensity of some of these strains and relieve others. We also see
that a simple stress may produce vatious strains: and henoce when the bodies
aro free from internal strains, and are perfectly homegeneous, the analysis
which considers all the changes becomes exceedingly refined.

‘We know by long experience that it is only necessary to keep within certain
‘limits, and these limits can easily be determined.

In the analysis of the more simple cases we consider only one distortion at
a time. Thus, in stretohing a piece, we oonsider the more apparent phenom-
enon—that of elongation—but at the same time there is a lateral contraction
which, in practice, is so small that we disregard it, but which in a thorough
analysis must be considered. Also in regard to flexure, we usually consider
only the effect of the elongation of some of the fibres and the compression of
others, as in the following chapter, but this change is necessarily aecompanied
by others, which in ordinary cases may be disregarded, The same remarks
apply to torsion and to transverse shearing.

The analysis which determines the relation between strains and stresses in
elastio bodies has given rise to a department of mathematical physics called
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the Mathematical Theory of Elasticity, which has been developed by M. Lamé
(Legons de la Théorte Mathématique de P Elasticité des Corps, Solides, Paris, 1852);
M. Louiville (Journal Louiville, 1868, etc.); M. Kirchoff (Ueber das. Gleich-
gewtcht und Bewegung einer unendlich dunnen elastiches Stabes,* Journal de
Crelle, tome 56, p. 285); M. Maxwell (On the Bouilibrium of Elastic Bodies ;
Transactions of the Royal Society of Edinburgh, vol. xx., 1853, p. 87, etc.);
M. Cauchy (Hzercises danalysis &t de Physique Mathématique; Comptes Rendus,
etc.), and others, [ ‘

* On the equilibrine and movement of an infinitely slender elastic rod.
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CHAPTER V.
F_LEIURE.

- 96. ELASTIC CURVE.

WEHEN a beam is bent by a transverse strain, equilibrium -is
established between the external and internal forces ; or, to be
more specific, all the external forces to the right or left of any
transverse section are held
in equilibrium by the elastic
resistances of the material
in the section. When in
this state the curve assumed
by the neutral axis is called
the elastic curve.

We will first find the
equation of the elastic curve
according to the conditions
of the “ Common Theory,” following substantially the method
originally given by Navier. Let Fig. 33 represent a beam, fixed
at one end, or supported in any manner, and deflected by a
weight, P, or by any number of forces. AB is the neutral
axis. Take the origin of co-ordinates at B (or at any other
point on the neutral axis), and let & be horizontal and coincide
with the axis of the beam before flexure, y vertical and « per-
pendicular to the plane of ay. The transverse sections CH
and EF being consecutive and parallel before flexure, will
meet after flexure, if sufficiently prolonged in some point, as o.
Through XV draw K H parallel to CM ; then will Ze¢ be the
elongation of a fibre whose original length was ckZ. We have
‘the following notation :—

de = LN = the distance between consecutive sections,

y’ = Ne = any ordinate of the surface,

u = Na or Na'.

b = NN = the limiting value of v,

- J (¥'su) = equation of the transverse section,

Fia. 83.
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dy'du = the tra.nsverse section of a ﬁbre,

= ON ‘the radius of curvature at A

P = the force necessary to elongate aliy. fibre an amount
equal to A when applied in the direction of its length,

A = ke,

Z = the moment of inertia of the section,

ZE = the coefficient of elasticity of the material, which is
supposed to be the same for extension and compression,

= Pz = a general expression for the moment of applied
forces. '

We suppose that the strain is within the elastic limit, and
establish the algebraic equatlon on the condmon that the sum
sum of the moments of the 1e51st1ng for(,es We also assume
that the neutral axis coincides with the centre of the transverse
sections of the beam.

By the similarity of the triangles ZOXN and %XNe, we have

ON:Ne..LN:keorp:y .. dw:a

The force necessary to produce this elongation is (see Equa-
tion (3) ), '
p=Edydu’;
‘which becomes, by substituting A from -(45),

p= j—j"y dydu..................(46)
and the moment of this force is found by myltiplying it by y’;
py = Ey” dg/’ AUl eeeeei e (47).

compression is found by mtegratmg Eqnatlon (47) s0 as to in-
clude the whole transverse section, and this will equal the sum
of the moments of the 'applied forces :

ol
[ f / ,-dy'du + f f yndy'du] = 3Pus
-y
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or._ffy"dydu SP®.iieiienininnann (‘18)

The quantity £ f f y dy'du, which depends upon the form of
the transverse section and nature of the material, is called the
moment of flexure.

The quantity f f y*dy'du, when taken between limits so a3
to include the whole transverse section, is called the moment of
inertia of the surface.* Calling this / and Equation (48)
becomes

ETI S ¥ - TR (49)

which is the equation of the elastic curve.

An exact solution of Equation (49) is not easily obtained in
practice, except in a few very simple cases; but when the de-
flection is small an approximate solution, which is generally
comparatively simple and always sufficiently exact, is easily
found.

dy\#
(da:‘+dy’)* da:‘(1+ w,)

‘We have. p = Tyds = Ty
= % nearly, since for small deflections

% (which is the tangent of the angle which the tangent line to

the curve makes with the axis of z) is small compared with
*unity, and hence may be omitted. Hence equation (49) becomes

which is the general approazimate Equation of the neutral axis.

97. THE MOMENT OF INERTIA of all transverse sections
of a prismatic beam is econstant, and hence I is constant for
prismatic beams.

* See Appendix,
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For a rectangle, as Fig. 34, we have )

e
I= ydydu = 2. ... .. ..(51)
0 —3d 3

For a circle, the origin of codrdinates being at
the centre;

y:—.psine
dydu = p dp d6

-Fia. 85.

7 2
.'.I::‘f p'dp d0 sin’@ = tm r*......(52)
0 0

SPECIAL CASES OF PRISMATIC BEAMS.

98. REQUIRED THE EQUATION OF THE NEUTRAL AXIS, AMOUNT
OF DEFLECTION, AND SLOPE OF THE OURVE OF A PRISMATIO BEAM,
WHEN SLIGHTLY DEFLECTED, AND SUBJECTED TO CERTAIN CONDITIONS
AS FOLLOWS :

99, casE I.—SUPPOSE A HORIZONTAL BEAM IS FIXED AT ONE
EXTREMITY AND A WEIGHT P RESTS GPON THE FREE EXTREMITY H
REQUIRED THE EQUATION OF THE NEUTRAL AXIS AND THE TOTAL
DEFLECTION.

Fia. 86. Fia. 37.

The beam may be fixed by being embedded firmly in a wall,
as in Fig. 36, or by resting on a fulerum and having a weight
applied on the extended part, which is just sufficient to make
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the curve horizontal over the support, as in Fig. 37. The latter
case more nearly realizes the mathematical. condition of fixed-
ness. In either case let

! = AB = the length of the part considered,
¢+ = the inclination of the curve at any point, and
4 = B( = the total deflection.

‘Take the origin of cotrdinates at the free end, A ;  horizontal,
vy vertical and positive downwards. The moment of P on any
section distant x from A is Pz, which is the second member of
Equation (50) in this case. Hence Eg. (50) becomes

) ‘py —_—
Er d? N T (53)
Multiply both members by de and integrate, and we have
EI1S d-’/ =F PR e, (54)

" When the deﬁectlons are small, the length of the beam re-
mains seneibly constant, hence for the point B,z =1; and at

the fixed en g—z =0. Substitute these values in Eq. (54), and

we find €, = — § P2 and (54) gives
' dy P )
dZ 2114](“;2 P) = tang te....... .(55)

The integral of Equation (55) is

eu(””’ 3Pz) + G,

But the problem gives y =0 fore =0.. C; =0;
P
SO Y= m(a’s
which is the equation of the neutral axis, according to the com-
mon theory, and may be discussed like any other algebraic
curve.
The greatest slope is at 4, to ﬁnd which make # = 0in Equa,-
tion (55)
Pl‘

. tang ¢ (at the free end) = — SET
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"The greatest distance between the curve and the axis of « is
at B, to find wluch make 2 =/ in Equation (56), and we have
- PP

y = A = — 3—E—I‘- ........................... (57) 1
~ In this case we have '
Ss = d’y d(Pm) P ................. (57a)

That is, the transverse shearing strain is uniform over the
whole length and equal to the load at the free end.

Differertiating agdin gives - :

2y _ o
that i, the increment of transverse shearing is zero.

If y were. positive. upward, everything else remaining the
same, the second member of Eq (03) would have been negative,
curve is com,a.ve to the axis of @, the second differential coefti-
cient and the ordinate must have -contrary signs. This would
make tang ¢ and'4 positive. It will be a good exercise for the
student to solve this and other problems by taking the origin
of coordinates at different points, only kceping « horizontal and
y vertical. For instance, take the origin at B; at C; at the
point where the free end of the beam was before deﬁectlon at
the middle of the beam ; or at any other point.

Eeample.—If 1 =5 ft., =38 in., d =8 in., #=1,600,000 Ibs., and P =15,000

1bs. ; required the alope at the free end and at the middle, and the mmmnm
deﬂectxon. .

100. CASE XL.—SUPPOSE THAT THE BEAM IS FIXED AT ONE
END, I8 FREE AT THE OTHER, AND HAS A LOAD UNIFORMLY DISTRI-
BUTED OVER' IT§ ‘WhOLE LeNeTH.—The beam may be ﬁxed as
before, as shown in Figs. 38 and 89.

//////////////////////// )

//////////////
\//////// <

2 . . Fia. 88. T Fia. 89.
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Let w0 = the load on a unit of length. This load may be the
weight of the beam, or it may be an addltlonal load.
W = wl = the total load.
Take the origin at A.
Then wz = the load on a distance , and
$wa? = the moment "of this load on & section distant
« from A.
Hence Equation (50) becomes

y
El =402 ceeiieienninnannnn (58)

d_y w
S

S Y= m(ﬂ?‘ —4 l'ﬂ) ................ (60)

wit we
and 4= — S—EI= — 8E'I ................... .(61)

dy I
Inwhlchﬁz()forw—l q=—£7,

y=0fore=0..0,=0,and

y=Adfore=1

If the origin of cobrdinates were at the fixed end, ' Pz in the
first case would be P (! — &), and in the second % (@ —a) The

student may reduce these eases and find the constants of inte-
gration. This case may be further modified for practice by
taking the origin of coordinates at different points.

From Eq. (58) we have

&>
/S’a.—_EId—%z ...... e ....(620)

I(af‘ —P)=tangv....oc0en.. (59) .

Also
dSe:EY%:wdz;

that is, the increment of shearing is the load per unit of length
multiplied by the increment of length.

101, cASE nI.—LET THE BEAM BE FIXED AT ONE END AND A
LOAD UNIFORMLY DISTRIBUTED OVER ITS WHOLE LENGTH, AND A




FLEXURE. ' 111

WEIGHT ALSO APPLIED AT THE FREE END.—This is a combination
of the two preceding cases, and is represented by Figs. 36 and
37, in which the weight of the beam is the uniform load.

EIM_Pa;+§w:c‘,

andA:-—m(P-i-%W) ...................... (62)

hence the deflection of a beam fixed at one end and free at the
other, and uniformly loaded, is § a8 much as for the same weight
applied at the free end.

102. CASE 1IV.—LET THE BEAM BE SUPPORTED AT ITS ENDS
AND A WEIGHT APPLIED AT ANY POINT.—Figs. 40 and 41 repre-
sent the case.

F1a. 40. Fic. 41.

Let the reaction of the supports be ¥V and ¥;. Take the
origin at A over the support, and let 4D = ¢ = the abscissa
of the point of appli(,ation of P.

Then, V- P and ¥V, = P.

The case is the same as if a beam rested on a support at D,
and weights equal to ¥ and V; were suspended at the ends. B
For the part AD, Equation (50) becomes :—

Eldz— Vx:—l:—ch ............... (63)

d P

N R U ;M,;)aw; ..................... (64)
andy=— 29D B4 Ot (G =)o (65)

in the last of which, y = 0 for @ =0 ... ; = 0 as indicated.
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For the part DB, the origin of codrdinates remaining at 4,
we have:—

EI@ =—Ve+P@—c)= Pcz—l——l= — Vi ({—=).. .(66)
d
dZ 2 ; El(a:’ D /O (67)
andy = ;" S @8+ Cat O ©8)

To find the constants, make & = ¢ in equations (64) and (67)
and place them equal to each other; do the same with (65)and
(68); and also observe that in (68) y =0 for =/ These
conditions establish the three following equations :—

P(l—0) Pé
~TwEr t 0= zmz(” D+
Pl —
—%ﬁc)-f' (J,c=el—ﬂ(c—3l)+0'c+0’"
Pel "
0= ~3FT° + C’l+0
From these we find -
, _ Pe
G= g7, @+ 20 — 8D
,_ Po
,_ P
C'=—g&r
Hence, for the part A.D we have -
%= 2y,
dy  P(—o)
=" WEI"T + 5 @ +90—3)
dy P 2 69
or,dm-- 5ZD (=8l+8cy?++2cP—3¢% |........(69)

y= G—Z—é[(cQ_Z)a"-i.-(c’+2l‘—3c?)cm] ...... SN
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To find-the maximum deflection, if ¢ is greater than 47, make

Z—Z = 0in (69) and find #; then substitute the value thus found

in Equation (70). If ¢ <3/ make% =0in Equaﬁon (67) and

substitute the value thus found in Equation (68).
If D is at the middle of the length, make ¢ = 4/ in equations
(63), (69), and (70); .and we have for the curve 4D

&
EI 5= —3Pa....ccoaenennnnn. e (71)
d
> 16EI(F —4),
P
y= = 57y BPe—4a). eveennn (72)
- PP
and A = 4‘3El(lf » —j}l in(72))cciiiiininnnn.. (78)

The greatest stress is at the centre, and the maximum mo-
ment is found by making # =}/ in the second member of
Equation (71). Hence, the maximum moment 8

TP (73a)

In this case the curve DB is of the same form as 4D, but
its equation will not be the same unless the origin of codrdi-
nates be taken at the other extremity of the beam.

From Eq. (71) we have

103. CASE V.—SUPPOSE THAT A BEAM IS SUPPORTED AT OR
NEAR ITS8 EXTREMITIES, AND THAT A LOAD IS8 UNIFORMLY DISTRIB-
TUTED OVER ITS WHOLE LENGTH.

No account is made of the small por-
tion of the beam (if any) which projects
beyond the supports. The distance be-
tween the sipports is the length of the
beam which is considered.

Let the notation be the same as in the
preceding c§ses.
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Then ¥V = 3wl = § W = the weight sustained by each support;
- V@ = $wle = the moment of ¥ on any section, as c;
we is the load on 2, and the lever arm of this load is
the horizontal distance from its centre to the section ¢, or 3z,
hence its moment is §w2? and the total moment is the differ-
ence of the two moments. Hence Equation (50) becomes

az
EI—y =30(—12 + ) eeerreennnn. (74)
d
=g (- 6l:v'+4a:‘+l'),
y= %](—2lz'+a:‘+l'z) ........ (75)
e 17: ‘ _ 5wt  B5WP
andlfz_}lm("(5),y=d— 38477 —38AFT " (76)
dy wl
. In these equations - = =0fore=4,.. O, =g TV A&
andy=0forz=0,..0=0.
Ss= «}'wl — wa.
dSs = Eld—}= — wde.

104, CASE VI.--LET THE BEAM BE SUPPORTED AT ITS ENDS,
UNIFORMLY LOADED, AND ALSO A LOAD MIDWAY BETWEEN THE
SUPPORTS.

. This case is & combination of the two preceding ones, and
may be represented by Fig. 40; for the weight of the beam
may be the uniform load. Hence

EI—~ = —3Po+iwt —Ywlw........... ()
P 5
A= PHEW ] (18)

Experiments on the deflection of beams are generally made
in accordanee with this case. If the beam be rectangular, we
Jhave from Equation (51), :
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I= bd’ which in (78) gives

A=—rs [P+ W].ooenoinnee . (19)

4Ed“‘

o E= 4450P[P+ Wl .+ ..(80)

According to Equation (79) the deﬂectxon of rectangular
beams varies as the cube of the length ; and inversely as the
breadth and cube of the depth, and dlre(,tly as the weight
applied.

In making an experiment to determine E the beam is
weighed, and that portion of it which is between the supports
and unbalanced will be W, and all the quantities except %
may be directly measured. If Z be known, we may measure
or assume all but one of the remaining quantities, and solve
the equation to find the remaining quantity, as the following
examples will illustrate :—

‘ Mpk&.—l. If a rectangular beam, 5 feet long, 3 inches wide, and 3 inches
deep, is deflected !5 of an inch by a weight of 3,000 1bs. applied at the middle;
required the eoefficient of elasticity. E = 20,000,000 1bs.

2 It b =2 ‘inches d = 4 inches, and ! = 6 feet, the wexghf; of the beam
144 1bs., and a weight P=10,000 lbs: placed at the xmddle of the beam deflects
it 4 an inch; required A&. E = 14,711,220 lbs.

8. A joist, whose length is 16 feet, breadth 2 inches, depth 12 inches, and
ocoefficient of elasticity 1,600,000 1bs., is deflected 4 inch by a weight in the
middle; required the weight; the weight of the beam being neglected.

Ans. P = 1,562 lbs.

4, An iron rectang'nlar beam, whose Iengl;h is 12 feet, breadth 1% inch, co-
efficient of elasticity 24,000,000 lbs., has a weight of 10,000 lbs. suspended at’
the middle ; required its depth that the deflection may be 737 of its length.

Ans. 8.8 in.

5. A rectangular wooden beam, 6 inches wide and 30 foet long, is supported
at its ends, The coefficient of elasticity is 1,800,000 lbs. ; the weight of a
cubic foot of the beam is 50 lbs. ; required the depth tha.t it may deflect 1
inch from it8 own weight.

How deep must it be to deflect 7}5 of its length ?

6. A cylindrical beam, whose diameter is 2 inches, length 5 feet, weight of
a cubic inch of the material 0.25 1b., is deflected 3 of an inch by a weight
P = 3,000 lbs. suspended at the mxddle of the beam. Required the coeﬁclent
of elastxcxty
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To solve this substitute I = }rr* (Equation (52)) ih Equation (78). This gives

2=l ]

7. Required tire'depth of a rectangular beam which is supported at its ends,
and so loaded at the middle that the elongation of the lowest fibre shall equal
Tdov of its original length. (Good iron may safely be elongated this amount.)

Equations (49) and (78a) become %’I =3Pl . p=2"L 1nthissubstitutethe

TP
walue of I, Equation (51), and it becomes

By the problem find p = 7004
2100P%
Sd= V8
8. Required the radins of curvature at the middle point of a wooden beam,
when P=38,0001bs.; {=10ft; d=4in.; d =8 in. ; and £ = 1,000,000 Ibs.
EI 1,000,000 x 15 x 4 x 83
IPIT  $x38,000x10x12

L
P=73m

Equations (49) and (73a) give p =
inches.

9. Let the beam be iron, supported at its ends. Letd = 1in.,, d=2in,
i =8ft, K = 25,000,000 Ibs. Required the radius of curvature at the middle
when the deflection is } of an inch. Use Eqgs. (49) and (73) for P at the middle.

= 1,89

EI EI r o
P E IR BELAT a4 >80 inches;
T

from which it appe&s that it is independent of the breadth and depth.

10. The centrifugal force caured by a lead moving over a deflected beam
may be found from the expreulonz:-:f , in which m is the mass of the moving
load, v its velocity in feet per second, and p the radius of curvature of the
beam. (See Mechanics.) -

11. All these problems may be applied to beams fixed at one end, and P
applied at the free end, or for a load uniformly distributed over the whole
length, by using the equations under Cases L., IL, and III.

103, CASE VIL-—LET THE BEAM BE FIXED AT ONE EXTREM-
ITY, SUPPORTED AT THE OTHER, AND HAVE A WEIGHT, P, APPLIED
AT ANY POINT.

The beam may be fixed by being encased in a wall, Fig. 43,
or by extending it over a support and suspending a weight on
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the extended part sufficient to make the beam horizontal over
the support, Fig. 44; or by resting a beam whose léngth is 2/

Fia. 48, . Fia. 44.

on three equidistant supports, and having two weights, each
equal to P, resting upon it at equal distances from the central

1 4 v v

[}

Fia. 45.

support, Fig. 45. In the latter case each half of the beam
fulfils the condition of the case.
Let I = AB, Fig. 43, be the part considered,
V= the reaction of the support,
nl = AD = the abscissa of P, and
J = the deflection of the beam at D.

Take the origin at A, the fixed end. We may consider that
the curve DB is caused by the reaction of ¥, while all the
forces at the left of £ hold the beam for ¥V to produee its
effect. Similarly the curve 4D is produced by the reaction ¥V
and the weight £, while all the forces at the left of them hold
the beam. - In all cases we may consider that the applied forces

_on one side of the transverse section are in equilibrium with °
the resisting forces of tension and compression in the section.
It is well also to observe that the origin of moments is at the

. centre of the transverse section, while the origin of coordinates

may be at any point.

For the curve AD we have, observing that % =0fore=0,

and y = 0 fore=0:—
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d'” =Pl —2) = V@ =) ereeeerenennnn (82)
EI% = P (nie—5) =V (le= D)o eere. (83)
Ely=P MTZ’—;:)—V(%—:—‘ ........... (84)

For the point D, we have, by making & = nl
%:m@—[wp (n— w)V]M ......... (85)
y=f=[IP—I—{n") V] ZT cereeereanns (86)

For the curve DB, observe that % = tang ¢ for @ = nl, and

y = f for = nl, using for their values (85) and (86) in deter-
mining the constants in the following equations, and we have:—

EIZS = V(=)o @1
ET d-" = }PuP — V(I — ) ................. 88)
Ely= (}« — jnl) PP — V(——— et (89)

To find the reaction ¥, observe that. y = 0, for # =7 in (89),
and we obtain :—

0=38—n)PnP -2V,
V=@ —n)P.....o.o.o..LL. (90)
By substituting this value of ¥ in the preceding equations,

they become completely determined. For the curve 4D we
have :—

EI% = Pnl —e—i*@B —n)l —a)]........ (91)

ay _

= 4EI[4nlw 9a? — (8 — n) 2l — a)].... . . (92)
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y= 12‘%,1 [6nda? — 22* — n¥(3 — n) (3l —2P)]. . ..(93)
and for the curve DB :—

EI% = —3PR@—n) (= @eereninnnnn. 94)

By _ Pr on_ (3 e 95

6&—’0—4_@-[ —('—'7&)( "—'ﬂ?)]..o.._ -------- ( )

y=§}§7[(6x— 2P — (3% — 2*) (3—n)]....(96)

The points of greatest strain in these curves are where the
sum of the moments of applied forces is greatest, and this is
greatest when the second members of (91) and (94) are greatest.
Neither of these expressions have an algebraic maximum, and
hence we must find by inspection that value of = whioch will
geve the greatest value of the function within the limits of the
problem. Equation (91) has two such values, one for 2 =0,
the other for # = 7/, and Equation (94) has one such for 2 = nl,
which value will reduce (91) and (94) to the same value.

Making = 0 in (91) gives for the moment of maximum
strain,

 3IPz=3Pl[2n -3+ n"]..............L 97
For the moment of strain at P, make @ = n/, in Eq. (91) or Eq.
(94), and we have

SPe=3 PlR*[—-8+4n—»"].............. (98)
To find where £ must be applied so that the strain at the point

of application shall be greater than if applied at any other
point, we must find the maximum of (98):—

.43 Px
odn

=0=—6n+122—4nb............ (99)

or the force must be applied at more than #3; of the length of
‘the beam from the tixed end. This value of » in (98) gives,

SPx= Pl x 0.174

Equation (99) has two values of n, but the other is not within
the limits of the problem.
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The position of the weight, which will give a maximum
strain at the fixed end, is found by making (97) & maximum.
Proceeding in the usual way, we find :—

nem143yT=0422 4 courrnernnnnnn. ..(101)
which in Eq. (97) gives, 3Pz = Pl x 0.181........ (102)
and in Eq. (98) 3Pz = Pl x 0131+.

To find where 2 must be*applied so that the strain at the
point of application will equal the strain at the fixed end, make
Equations (97) and (98) equal to each other, and find . This

gives,

0.5858 +.
But n = 0.5858 + is the only practical value.
To find where P must be applied so that the curve at that

1.
n= { BATAL + i, (103)

point shall be horizontal, make % = 0,and @ = sl in (95).

1.
This gives n = { 3.4141
0.5858

which are the same as the preceding values of #. To find the
corresponding deflection, make @ = nl, and n = 0.5858 +, in
(93), and we find

Pr
4= 0.0098 77 AR R R R R T PP PRR PP (104)
For n < 0.5858, tang 7 is +
n> 0.5858, tang 7 18 — s .............. (105)
n-=10.6858, tang 4 is 0

To find the maximum deflection when » = 0.634, make g—z =
in Eq. (92) or (95), according as the greater deflection is to the
right or left of . But, according to Eq. (105), it belongs to the
curve AD; hence use Eq.(92). Making » = 0.634 in Eq. (92),
placing it equal zero, and solving gives,

@ = 0.60457;
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which in Eq. (93) gives,

re '
y=d=000987TZ7 -.coovunrnnnnn. (106)

To find where P must be applied so as to give an absolute
maximum deflection; first find the abscissa of the point of
maximum deflection, when P is applied at any point by making

dy =0 in Eq. (92), and thus find

M .
z= 252 = :))::2 = ;"z .......... (107)

which, substituted in Eq. (93) gives the corresponding maximum
deflection. Then find that value of » which will make the
expression a maximum.

To find the deflection when 2 is placed at the middle, make
n = § in Eq. (93) or Eq. (96), which gives

_v_re
#3816 EI°

The point of contra-flexure in the curve 4D is found by
making% = 0 in (91) (see Dif. Cal.) which gives,
‘ S 3t —nt—2n

??Bﬁ—#*2€

o=

Hn:%,w:%“.r.l..

. The second.- member of Eq. (91) is the moment of applied
forces, and as it is nought at the point of contra-flexure, it fol-
lows that at that point there is no bending stress, and hence no
elongation or compression of the fibres, but only a transverse
shearing stress. The value of the transverse shearing is

Se=EI@=—P+4}n'(3—-n)P

which compared with Eq. (90) shows that the shearing strain
at any point of the curve A.D subtracted from the reaction at
' B equals the total load £: o '

If a beam rests upon three horizontal equidistant supports,
and two weights, each equal P, are placed upon it, one on each
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side of the central support and equidistant from it, it fulfils
the condition of a beam fixed at one end and supported at the
other, as before stated, and the amount which each support will
sustain for incipient flexure may easily be found from the pre-
ceding equations.

The three supports will sustain 2P, and the end supports
each sustain V' = §n*38 — n) P. (See Eq (90).)

Hence, the central support sustains

V' =2P —n*3 — n)P.
Ifn=%V=FfPand V=43 P.
106. cASE VIIL,—LET THE BEAM BE FIXED AT ONE END, SUP-

PORTED AT THE OTHER, AND UNIFORMLY LOADED OVER ITS WHOLE
LENGTH,

Fia. 45, Fie. 46.

Take the origin at A4, Figs. 45 and 46, and the notation the
same as in the preceding cases, then Equation (50) becomes

. N/ w 14
. Integrating gives 7% = m(z' —B)+ 577 (P — 2, (109)

and y = .[(a:‘ 4P ) + = (3P0 — oF) . . . ..(110)

6EI
o re oy @Y
mwhlchd~w=0forw=l,andy=0forw=0.

If V=0, these equations become the same as those under
Case 1L

In Equation (110) y is als> zero, for # = Z; for which values
wehave V=8W=5%wl....cocoieiriieirieeann... (111)

This value substituted in Equations (108), (109), and (110)
gives:—
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EI%{ =30 (4 —30). e erniaiiiaiannn. (112)
'ZZ BT (8:6“ 0L 4+ B)reareeeaeennnnnns (113)
y= Zs%] (Qat — Bl + PE) e v eaeeeeneeanns (114)

The point of maximum deflection is found by placing Equa-
tion (113) equal zero and solving for #. This gives

e= 1,
and,z M[ = 0.4215/,
: 16 0
using the positive value only; and this in Eq. (114) gives
wr '
y=4=0.0054 0 ARRLRRRRERRREERE (115)

There are two maxima strains; one for # = 7; the other for
@ = §1. The former in (112) gives

SPe=3wlP=3Wi................ (116)
and the latter gives
S Px= — 35 Wi = — Winearly.

The point of contra-flexure is found from Equauon (112) to
be at @ = §/, at which point the longitudinal strains are zero,
and there is only transverse shearing.

From Eq. (112) we have
Se=EI%=w¢—§wl

Fore=3 wehave Ss=§wl................. (116a)

If the beam is supported by three props, which are in the
- same horizontal, Fig. 46, then each part is subjected to the same
conditions as the smgle beam in Fig. 45. Hence, if W is the
load on half the beam, each of the end props will sustain ¥ =
-EW (Eq (111) ), and the middle prop will sustain 2 W—§ W

From the supported end, A to the point of contra-flexure
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(47) the beam is in the same condition as a beam which is sup-
ported at its ends and uniformly loaded. Hence the supported
end sustains § of $wl = $wl, as before found. The shesring
strain at the point of contra-flexure must be the same as at the
supported end, which agrees with Eq. (116a).

Such are the teachings of the “ Common theory.” But the
mathematical conditions here imposed are never realized. Itis
impossible to maintain the props exactly in the.same horizontal.
As they are elastic they will be compressed, and as the central
one will be most compressed, the tendency will be to relieve the
strain on it and throw a greater strain upon the end supports.
If the supports be maintained in the same horizontal, the results
above deduced will be practically true for very small deflec-
tions, within the elastic limits. _

107. 0ASE 1X.—LET THE BEAM BE FIXED AT BOTH ENDS AND
A WEIGHT REST UPON IT AT ANY POINT.

To simplify the case, sup-
pose that the weight rests
at the middle of the length.

Let the beam be extend-
ed over one support and a
weight, P, rest at C, suffi-
cient to make the curve hori-

zontal over the support A. Fie. 47.
We have V=P, + 3P.
Let AC= gl.
Then for the curve A.D we have,
EIZE{_ (@l +@)— Vo= Pygl—} Pa
dy
~EIF = P glo—1Pa* + (G,=0).

To find P, observe that % =0 for 2 = §I;

S 0=3P gP — 4 PP;. . Pig=13P.
This reduces the preceding equations to the following :—
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E[% AP enane e, (117)
d
dZ 5 1; 7 o =2 enenennennnn.n. (110)
and by integrating again, we find :—
P
y=m(3lw’—4w’) ............... (119)

pPr
m.on.--

There is no algebraic maximum of the moment of strain as
given in the second member of Equation (117), but inspection
shows that within the limits of the problem the .moment is
greatest for z =0 or « = 4/. These in (117) give the same
value, with contrary signs; hence the moment of greatest
strain is

© Fore=Hin(119),y=4d= . ..(120)

) Y AU (121)

The moment is zero for @ = 12

108. CASE x.—LE-r THE BEAM BE FIXED AT BOTH ENDS AND
A LOAD UNIFORMLY DISTRIBUTED OVER ITS WHOLE LENGTH. ‘

© notation being the same as before used, we have
V=P, + {wl.

atgl = AC.
‘he equation of moments is
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EI%Y =y — Vo + P(ql +9)
= }wa? — wles + Pigl.
Integrating, and observing that ‘%—:/ =0fore=0; alsoy=0
for @ = 0, and we have
EI% s — jule® + Pygle
Ely = Jqwat — fpwl® + 3 Prgle.
Bntdi/=0f01_-z=l; also y = 0 for @ =1

daz
1w W
~P= T =1y
which substituted in the previous equations give :—
&y W
EI 2% =15 [P—6e(—a)]......... (122)
dy
=1 m[(l 2)l—2)]....... (123)
Y= mﬁ (Z—Z)’ﬁ’ ............... (124)
. 1 we
Fore= '}lm(124),y =4 = m ._E'—I— ............. (125)

Making %: 0 we find for the points of contra-flexure

»— | 078872
=10.21182

at which point there is no longitudinal strain, but a transverse
shearing strain. 'We have

e TY
SaZ(E;d“’L%[%—IJ

which is equal to § Wat the ends (either +) and zero at the
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middle. At the first point of contra-flexure (z = 0.2113) the
ghearing strain is 0.2887 W, to which add the load on that part,
= 0.2113 W, gives 0.5000 W, or } the total load.

The maximum moments are for « = 0 and @ = 3/
For @ = 0, the second member of Eq. (112) gives iy Wl (126)
For 2 = il “ — W

Hence the greatest strain is over the support, at whu,h point
it is twice as great as at the middle. If W= P, we see that
the strain over the support is § as great in this case as in the
former.
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.

109, RESULTS COLLECTED.

' B o
DEFLEO-
Mt TR | woietn, | wemewior | womire |53 | Tonon
Casx, FLEXURE, SCRESS. X $ »
o
LOAD AT Pz, 4
L FREE END.| Kgq. (53). PL U Eg?l(’w).
FIXED AT
ONE END.
UNRIFORM jwat iw.
IL LoaD. | Eg. (59). w12 ety
AT THE 3Pz, P.
v. MIDDLE. Eq. (71). iR, ¢ Eq.‘(73).
SUPPORTED :
——| AT THE
ENDS. A
w(lz—z*). =W
V. UNIFORM. Ey. (14). WL 3 Eq. (16)
AT 0.634| For AD ) P
VII FROM Eq. 91). |82 v3—8)PlL| 4+| _nearly.
* | FIXED AT FIXED END| For DB '_‘l'g’q (104)
ONE END | Eq. (100). | Eq. (94). :
AND 8UP-
————'PORTED AT
. |THE OTHER. ot —82) - -
VIIL Ustrory. | $0(4%° — ¥ 8 |45 nearly.
Eg. (112). | Eg. (116). "%, (115)
Ar THE | }P(I—42). 3P P
Ix MIDDLE, | ZHq. (117). Eq. (121). 8 T
Eq. (120).
FIXED AT
" |BOTH ENDS.
W w
- (P-8lz+62%| A WL 0
X. Umromilngq. (122). Ey, (126). 2 Ty, (195).

110. REmARKS.—It will be seen that the greatest strains
in the 1st and 2d cases are as 2 to 1; and the same ratio holds
in the 4th and 5th cases; but in the 9th and 10th the ratio is
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as 3 to 2. The maximum strains in Cases VII. and VIIL do
not oceur at the points of maximum deflection.

Although the moment in the first case is to that in the 2d as
2 to 1, yet the deflections are as 8 to 3; and in the 4th and 5th
cases the deflections are as 8 to 5.

A comparison of Cases IV. and IX. shows the advantage of
fixing the ends of the beam. The same remark applies to Cases
V.and X. In the former cases the strain is only one-half as
great when the beam is fixed at the ends as when it is supported,
and in the latter two-thirds as great.

Other interesting results may be seen by examining the table.

The following are the results of some experiments made by
James B. Francis:

FEwperiment 1. A bar of ¢ common English refined ” iron, marked ‘‘J crown
K, best,” 12 feet 2% inches long, mean width 1.535 inch, mean depth 0.367
inch, was laid on the 4 bearings, and loaded at the centre of each span, so
as to make the deflections the same, the weight at the middle span being
82.84 pounds, and at each of the end spans 52.00 pounds. The deflections
with these weights were as follows :

At the centre of the middlespan,................... PN 0.281 inches.
At the centre of the end spans. ...0.275 and 0.284 inches, mean, 0.280

The deflections of the 3 spans being, as nearly as practicable, the same, the
middle span is in the condition of a beam *‘fixed at both ends ahd loaded in
the middle,” each of the end spans * being fixed at one end and supported at
the other.” A piece 3 feet 11} inches long was then cut off from each end of
the bar, leaving a bar 4 feet 4§ inches long, which was replaced in its former
position and loaded with the same weight (82.84 pounds) as before, when its
deflection was found to be 1.059 inch, or 3.77 times the deflection when
‘¢ fixed at both ends and loaded in the middle.”

Eiperiment 2. A bar of iron of the same quality and length as in Experi-
ment 1, nearly square, its mean width being 0.558 inch, and mean depth
0.549 inch, was laid on the same bearings, and loaded with the same weights,
the deflections being as follows:

At the centre of the middle span........ccoeeveeerrvenennnses ..0.342 inch.
At the centre of the end spans.......0.238 nnd 0.244 inch, mean, 0.241 *¢

The bar was then reduced in length as in Experiment 1, leaving 4 feet 3%
inches, which was replaced in its former position and loaded with the same
weight (82.84 pounds) as before, when its deflection was found to be 0.983
inch, or 4.06 times the defloction, ** when fixed at both ends and loaded in the

middle.”
The result of both experiments agreed substantially with the deﬂeotlon in
9
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the case of a beam “ fixed at one end, supported at the other, and loaded in
the middle,” which isl—z, = 0.438 of the deflection in the case, ‘‘ supported a

each end and loaded in the middle.” In the foregoing experiments, the end
spans correspond to this case, and the observed deflections with a weight of 52
pounds, were 0.419 and 0.391 respectively, of the deflections in the case,
‘‘supported at the end and loaded in the middle,” differing somewhat, but not
very widely, from the proportion given above.

111. PROBLEM.—A PRISMATIC BEAM RESTS ON A SUPPORT
AT THE MIDDLE OF ITS LENGTH, AND BARELY OOMES IN CONTACT
WITH SUPPORTS WHICH ARE PLACED AT EACH END. SUPPOSE THAT
AN UNIFORM LOAD IS PLACED ON ONE-HALF OF THE BEAM; IT I8
REQUIRED TO FIND THE WEIGHT P WHICH, IF PLACED AT THE
END WHICH I8 REMOTE FROM THE UNIFORM LOAD, WILL CAUSE
THE END TO WHICH IT I8 APPLIED TO REMAIN IN CONTACT WITH
THE SUPPORT.

Fia. 49.

In Fig. 49,

Letl=AB = BC;
w = the load per foot of length on BC; and
" P = the weight at 4 which is necessary in order to keep
the end down to the support.

Take the origin at 4, « horizontal and y.vertical.

Since no part of /> is supported by A, it must be balanced
by a part of the reaction of the support at C.

The supports B and C each sustain one-half the uniform
Joad ; hence,

3wl — P will be the reaction of the support C;
3wl + 2P will be the reaction of the support B.
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First consider the curve B (, and while so doing suppose that
the part AB is rigid; in other words, that the weight P does
not cause A8 to bend while the part BC is elastic. 'We then
have for any point a, between B and C.

Pz = the moment of P;

(3wl + 2P) (@ — I) =the moment of the reaction at B,
which will have an opposite sign
to Pz;

w(z—7) = the load on Ba;

$w(z—7)* = the moment of the load on Bua.

Hence,
@ EITY = Po+ jwlo—1p—@ul + 2P) (=)

W Er%
- EIch
also, Ely =} Pu*+yqw (—0)— 1 (wl+4P) (2—1)*+ Cz-+ O,
But y =0 forw =1; and
y =0 for # =27; which values in the last equation give

0=} PP+Cl+0 ' :

0 = 4 PP+ ypwl'— 5(wl+4P) P+2C 1+ Cp=

PP—Jwl'+ 20, 1+ C,.

Eliminating successively C; and C; from these equations and
we have,

=3Pz + }w (x—1)*—% (wl + 4P) (x—0%+ 0,

Cy = § PP—gpwlt.
These substituted in the preceding equations give

®) EI%—Z =3P+ (yww — Sywl— P) (2—I—§ PP+ fg0P

©) Ely=}P?+ (jpwr—iwl—4P) (z—if—§Pla
+ dwlPn+§ PB—gwl.

These equations will enable us to determine all the properties
of the curve BC. But the'solution of the problem only makes
it neceseary to find the inclination at B. For this =7 and we
find :
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@ = 1P+ goni) g

Now consider AB as ﬂexlble, and we have

. dy Pa?
: =omrt

But this value of the tangent when @ = 7 is the same as the
preceding value

+ G

. 2
Y Oy=(— 20P+wl)2_IE_I-

%)) dl—(mpz' 20Pl’+wl')

Integrating again gives

= (4Pas® — 20 PP + wl“w)2—4E—7 + G,

But by the conditions of the problem
y=0forz=0..C,=0
Also, y=0foro=1
0= —16PB + wlt,
or P={wl=4W.

This problem was suggested by the conditions of the draw-
bridge. If the end is not held down, the distance which it will
raise by an uniform load on the other half is found from Eq.
(@), by making P .= 0, and multiplying by . This will give

wlt
24ET

112. TO FIND THE REACTION OF THE SUPPORTS,
we may first find the bending moments over the supports, according to Clapey-
ron’s method.

Fia. 49a.
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Let A, B and C be any three consecutive supports;
i, the segment A B, and !' the segment B ;
w the pressure on a unit of length on AB, and v’ on BO;
X, X,; X, the bending moments at 4, B, and C, respectively;

Take the origin at A. The moment of external forces upon any point in the
segment AB, will involve the moment of all the reactions at the left of 4,
and the moment of the total load to the left of A, plus the moment of the
load on 2. The moments of the two former may contain the first power of z,
and possibly they may also contain a constant. Let A and B be constants;
then the equation for the moment vf flexure will be

(@ EI :—;{ = A+ Bo—jua*

1f 2 = 0, the second member becomes

A=X,
and if 2 =, we have A+ Bl — jwi* = X,
1, X —X
..B——2w+ l'—'
o B x X e e

daz [}
gimilarly, if the origin be taken at B we have

2 —
@ B3 = x4 DXt e

Integrating Eq. (5), observing that ‘% = tang ¢’ for # = 0, and tang i’ for2 =
land y =0for 2=0and for 2=1 Between the equations thus formed eli-
minate tang ¢, and find the value of tang ¢" from Eq. (¢), and substitute

its value in the preceding. This done and the result may be reduced to the
following form :—

@ X, 142X, (H)+ Xl +3,(0P +079) =0
which expresses the relation between the bending moments at any three con-
secutive points of support.

By applying this equation successively to the suocessive points, the bending
moments at all the points of support may be found, after which the bending
moments of any point of any of ‘the segments by Eq. (a) or (). The reactions
may also be eagily found by the aid of the results.

It =0=&¢., and w =w" = &o., Eq. (d) becomes

0 X,+4X,+X;+}wi* =0,
and for the second, third, and fourth supports we have
X, +4X;+ X +iwit =0,
and 80 on. By taking the difference between these, we find the relation be-

tween the bending moments for four consecutive points of support indepen-
dent of the uniform load.
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Ezample.—Suppose that there are five points of support, equidistant; and
the load uniform.

The bending moment at the first support, 4, Fig. 494, is zero; that at B
equals that at D,—supposing that there is a fifth point, &, beyond D. Hence
for the first two segments, Eq. (¢), gives

0+4X, 4+ X, +3wi* =0
and for the second and third segments ;
X +4X, + X, + 3wt =0,
or X, +2X,+3wlt=0;
and by elimination
X, = —fpwit, and X, = —wit.
Let Py, P,, &c., be the reactions of the supports at A, B, &o., then the

moments at B are

Pi—jult = X, = — Ault
S PL=4W,

where W = the load on each segment.
For the moments at 0 we have

P, .20+ Pyl—wl H—wl. }1= X 3 = — L 0l®
.. Py=3%%wl.
The total load is
2P, +2P;+P,=4wl
) o Py=34wl,
which are the same as those given in the table on page 135.
‘Whatever be the number of props, we have for the first segment

d!
El d_zl{=_ V.z+3wzt

El Zi; =} V.2t +hua’+ 0,

Ely=—}V,2® +fwz*+ 0,2+ 0
For 2=0, y=0; also for z=1{, y=0
.*. 03=0, and O, =} Vit —}wlis.
Hence over the first support we have '
’ dy _ 4 ]

Y9 _ i— — W)
3z — g =04V~ Wgrm
and for the deflection at the middle of the first segment
la
A=AV, —TW)gern

which is always somewhat less than the maximum deflection, except when the
beam is supported at its ends only.
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ADDITIONAL PROBLEMS WHICH ARE PURPOSELY LEFT
UNSOLVED.

1. Suppose that a beam is supported at its extremities, and has two forces
at any point between. In this case the curve between the support and the
nearest force will have one equation ; the curve between the forces another;
and the remaining part a third.

2. In the preceding case, if the forces are equal and equidistant from the
supports, the curve between the forces will be the arc of a circle.

8. Suppose that the beam is uniformly loaded and rests on four supports.

4. Suppose that the beam is supported at its extremities and has a load uni-
formly increasing from one support to the other.

5. Suppose that the beam is uniformly loaded over any portion of its
Tength.

6. Suppose that it has forces applied at various pointa.

These problems will suggest many others.

7. Suppose that a beam is supported at several points, and loaded uniformly
over its whole length.

Let W = the weight between each pair of supports,

Vi, Ve, Vs, &c., be the reactions of the supports, counting from one
en
and let the?i’ist.anoea between the supports be equal.
Then we have :—

sép- Vl Va Va VI Vs Vs V1 Vt Vs V‘l o

$W| 3} W| Fractional | parts of W.
§ 1 $
W | BB h

32|03 | #

sl st | w | B |
| B | e 182 |18 | Bt | Ak
T T T Rt A (P S VT R T TR Y TR T
3t 48635 | B0n | aee | a1 | % | s [am
195 99 (430 |36 | e3% | % |3 | m | 6% | 3%

L I

© ® I O O o & W
o
o)

[y
(]

If the beams and props were perfectly rigid, all but the end ones would sus-
tain W, and the end ones each } W.
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113. BEAMS OF VARIABLE SECTIONS.

For these 7 is variable, and its value must be substituted in
Equation (50) before the integration can be performed. As an
example, let the beam be
fixed at one extremity, and
a weight P, be suspended at
the free extremity, Fig. 50.
Let the breadth be constant,
and the longitudinal vertical
section be a parabola. Then
all the transverse sections
will be rectangles.

F1a. 50.

Let I = the length,
b = the breadth, and
d = the depth at the fixed extremity.
If y is the whole variable depth at any point, we have, from
the equation of the parabola,

By)P =p=, or 1P =pl, . .p= fl’ in which p is the parameter
of the parabola.

From Equation (51) we have
I= -},by‘*, in which substitute y, from Equa.tlon (127), and we

have /= -ﬂ—w? ............................... (128)

The equation of moments is, see Equation (50),

Er fzz_ Pz, in which substitute Z, from Equation (128),
and we have )
Py _ 12Pz¥
d = EbdP

Multiply by dz and integrate, observing that g—i =0forz=1
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and we have

dy 24PW 1

dx ~ Ebd
Integrating again gives il
spd 3 4

vy is zero for » = 0.
y= 4 fore=1;

nd=_5C

If, in Equation (57), we substitute 7= $5d* (Eq. (51)), it be-
comes

4PP
T EiF
which is one-half that of Eq. (129) ; hence the deflection of a pris-
matic beam is one-half that of a parabolic beam of the same
length, breadth, and greatest depth, when fixed at one end and
free at the other, and has the same weight suspended at the
free end.

In a similar manner the equation of the curve may be found
for any other form of beam, if the law of increase or decrease
of section is known. Several examples may be made of beams
of uniform strength, which will be given in Chapter VIL

4=

114. BEAMS SUBJECTED TO OBLIQUE STRAINS,

Let the beam be prismatic, fized at one end,
and support a weight, P, at the free end ; /\F
the beam being so tnclined that the direction
of the force shall make an obtuse angle with

the azis of the beam, as in Fig. 51. El\
Let P, = P sin § = component of P per- s
pendicular to the axis of the beam,
and
s == P cos = component parallel to
the axis of the beam.

Take the origin at the free end, the axis /
of z being parallel to the axis of the beam, P,
and y perpendicular to it. )

Then Equation (50) becomes Fie. 51.
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dae
Bl = - Pua+Py
a*
or,ag=—p’z—}-q’y.................... ........ (130)

in which p* =§}; and ¢*= —% The complete integral of (130) 1s (see Ap
pendix).

[ o] —qz  pt
y=0C6 +Cse +’;—',c

The conditions of the problem give

%:0!0::0:1; and
y=0forz =0; and these combined with the preceding equation

give:—
4 13 t]
0=q( O — off)#;i,;

0=0, + Oy;

From which C, and C; may be found, and the equation becomes completely
known.
Wealso havey = fJforz = I;

Q@ —ql p’
e A"—"-‘ 010 + 0’0 +q_gl;

Next, suppose that the force makes an acute angle with the axis of the beam,
as in Fiy. 52.

For the sake of variety, take the origin at A, the fixed end, 2, still coin-
ciding with the axis of the beam before flexure. Using the same notation as
in the preceding and other cases, we have

dty

e N LV L) VORI (131)
The complete integral is
//’_} A—y=Asing(@+ B -—’;—:(l—z) (132)
s B
Iy in which 4 and B are arbitrary constants.
'/' $s7 > From the problem we have
y=0forz=0;
d,

'dl:a =0fore=0; and

y=Aforz =1,
. by means of which the equation becomes
F1e. 52. completely known.
One difficulty in applying these cases in practice is in determining the value
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of I. Before it can be determined, the position of the axis must be known.
According to Article 78, 3d case, it appears that the neutral axis does not co-
incide with the axis of the beam. Indeed, according to the same article, it is
not parallel to the axis, and hence 7 is variable, and the equations above are
only a secondary approximation ; the first approximation being made in estab-
lishing Equation (50), and the next one in assuming / constant. In practice
we assume that Jis constant for prismatic beams, and that the neutral axis
coincides with the axis of the beam.

115. FLEXURE OF COLUMNS,

If a weight rests upon the axis
of a perfectly symmetrical and
homogeneous column, we see no
reason why it should bend ; but
in practice we krow that it will
bend, however symmetrical and
homogeneous it may be,and how- [o |,
ever carefully the weight may &
be placed upon it. If the weight
be small, the deflection may not be
visible to the unaided eye. If the J
weight is not so heavy as to crush
the column, an equilibrium will F1c. 54,
be established between the weight
and the elastic resistance within the beam. Let the column rest
upon a horizontal plane, and the weight  on the upper end be
vertically over the lower end. Take the origin of coordinates
at the lower end of the column, Fig. 53, 2 being vertical, and y
horizontal. They must be so taken here, because =z was as-
sumed to coincide with the axis of the beam when Equation
(50) was established. Then y being the ordinate to any point
of the axis of the column after flexure, the moment of P is Py,
which is negative in reference to the moment of resisting forces,
because the curve is concave to the axis of », in which case the
ordinate and second differential coefficient must have contrary
signs (Dif. Cal.). Hence we have,

EI%Y Py iiiiiiiniiii ... (189
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Multiply by dy and integrate (observing that dz is constant),
and find
d; P
== EP+ 0

But % =0 for y = 4 = the maximum deflection. These

values in the preceding equation give O, = %, which being
substituted in the same equation and reduced gives

E1 d;
\/ yy,

Buty=0forz=0 .. 0,:0. Hence the preceding gives
y=4dsin P

Buty = 0 for # =1. Therefore, if n 18 an integer, these
values reduce (134) to

P 1=
EI Xét=nn;
nP= EI"T"’ ................ (135)
This value of P reduces (134) to

y= dsin na a%
which is the equation of the curve. It is dependent only upon
the length of the column and the maximum deflection. If
n =1, the curve is represented by a, Fig. 54; if n = 2, by §;
ifn=3,byec

If n = 1, Equation (135) becomes

o
P= ?EI...-.-..---.-.-...-.-(136)
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which is the formula to be used in practice. We see that the

resistance is independent of the deflection. If the column is
cylindrical, 7 = { = 7 (see Equation (52));

PE
.'.P:TX?...... ..... EERRIE (137)

hence the resistance varies as the fourth power of the radius
(or diameter), and inversely as the square of the length. If the
column is square, / = ¢ §* (Equation (51)),

o A
P = _E X F .................... (138)

These formulas, according to Navier* and Weisbach,t should
be used only when the length is 20 times the diameter for
cylindrical columns, or 20 times the least thickness for rectan-
gular columns ; and Navier says that for safety only 4% of the
calculated weight should be used.in case of wood, and % to } in
case of iron ; but Weisbach says they should have a twenty-fold
security. '

Ezamples.—1. What must be the diameter of a cast-iron column, whose

length is 12 feet, to sustain a weight of 30 tons (of 2,000 lbs. each); & = 16,-
00_0,000 Ibs. ; and factor of safety . Ans, d = 7.52 in.

2. 1If the column be square and the data the same as in the preceding ex-
ample, Equation (138) gives

+ /12 60,000 x (12 x 12)* x 20
(8.1416)" x 16,000,000

b= = 6.6 inches.

In the analysis of this problem I have followed the method
of Navier; but practical men generally prefer the empyrical
formulas of Article 62. But it will be observed that the law
of strength, as given in the formulas in that article, are the
same as those given in equations (187) and (138) for wooden
columns, and nearly the same as for iron ones. The chief dif-
ference is in the coefficients, or constant factors. In the analy-
sis it was assumed that the neutral axis coincides with the axis
of the beam, but it is possible for the whole column to be com-
pressed, although much more on the concave than on the con-

* Navier, Résumé des Legons, 1838, p, 204.
t Weisbach’s Mechanics and Engineering. Vol 1, p. 219, 1st Am, ed.

.
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vex side, in which case the neutral axie would be ideal, having
its position entirely outside the beam on the convex side.. In
this case, if the ideal axis is parallel to the axis of the beam,
the value of 7 will be constant; and equations (137) and (138)
retain the same form. The problem of the jflezure of columns
is then more interesting as an analytical one than profitable as
a practical one.

GRAPHICAL METHOD.

116. THE GRAPHICAL METHOD consists in representing
quantities by geometrical magnitudes, and reasoning upon them,
with or without the aid of algebraic symbols. This method has
some advantage over purely analytical processes; for by it
many problems which involve the spirit of the Differential and
Integral Calculus may be solved without a knowledge of the
processes used in those branches of mathematics; and in some
of the more elementary problems, in which the spirit of the
Calculus is not involved, the quantities may be directly pre-
sented to the eye, and hence the solutions may be more easily
retained. It is distinguished, in this connection, from pure
geometry by being applied to problems which involve mechan-
ical principles, and to use it profitably in such cases requires a
knowledge of the elementary principles of mechanics as well
a8 of geometry.

But graphical methods are generally special, and often re-
quire peculiar treatment and much skill in their management.
It is not so powerful a mode of analysis as the analytical one,
and those who have sufficient knowledge of mathematics to use
the latter will rarely resort to the former, unless it be to illus-
trate a principle or demonstrate a problem for those who cannot
use the higher mathematics. A few examples will be given
to illustrate this method.

117, GENERAL PROBLEM OF THE DEFLECTION OF
BEAMS.— 70 find the total deflection of a prismatic beam
which 18 bent by a force acting normal to the axis of the beam
without the aid of the Calculus.

Let a beam A B, Fig. 55, be bent by a force, P, in which
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case the fibres on the convex side will be elongated, and those
on the concave side will be compressed. Let AB be the neu-
tral axis. Take two sections normal to the neutral axis at L

F1a. 56.

and %V, which are <ndefinitely near each other. These, if pro-
longed, will meet at some point as 0. Draw KNV parallel to
LO. Then will ¢, = A, be the distance between AN and EN
at /%, and is the elongation of the fibre at 2. Let ¢V = y, then
from the similar triangles Ve and LON we have

’ Ne. LN LN
O.N-' Né.- LN. ke:l: W:awy-

If, now, we conceive that a force p, acting in the direction of
the fibres, or, which is the same thing, acting parallel to the
axis of the beam, is applied at Z to elongate a single fibre, we
have, from Equation (3) and the preceding one,

— ke E
p=Edugn=0xy

in which da is the transverse section of the fibre. As the sec-
tion VA turns about &V on the neutral axis, the moment of this
force is :

4a,

g —
which is found by multiplying the force by the perpendicular y.
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This is the moment of a force which is sufficient to elongate
or compress any fibre whose original length was Z N, an amount
equal to the distance between the planes AV and £V measured
on the fibre or fibre prolonged. Hence, the sum of all the mo-
ments of the resisting forces is .

Sy = g 5y da

in which 3 denotes summation ; and in the first member means
that the sum of the moments’of all the forces which elongate
and compress the fibres is to be taken ; and in the second mem-
ber it means that the sum of all the quantities 3* 4a included
in the transverse section is to be taken. The quantity, 3 da
is called the moment of inertia, which call 1.

But the sum of the moments of the resisting forces equals
the sum of the moments of the applied forces. Calling the
latter 3 PX,in which X is the arm of the force P, and we have

£ —_ .
Spy=SPX= 0 %/ da= __‘gl{r |
. EI
.. ON = Z—,l)j, ..................... (139)

In the figure draw Lb tangent to the neutral axis at Z, and
Na tangent at V. The distance @b, intercepted by those tan-
gents on the vertical through A4, is the deflection at 4 due to
the curvature between Z and V. As LA is indefinitely short,
it may be considered a straight line,and equal #; and Zb=LC
very nearly for small deflections ; and LC' = X. (Zstands for

two points.)
By the triangles OLXN and a.Lb, considered similar, we have

Xa
ON.w..Lb.abz Ujv-
in which substitute O from Equation (139) and we have
XeSPX
@b =g e (140)

) 4
which is sufficiently exact for small deflections. If, now, tan-
gents be drawn at every point of the curve 4B, they will divide
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the line .4 C into an infinite number of small parts, the sum of
which will equal the line A4C, the total deflection. But the
expression for the value of each of these small spaces will be of
the same form as that given above for @b, in which P, £ and 7
are constant.

This is as far as we can proceed with the general solution.
‘We will now consider

PARTICULAR CASBES.

118. CASE 1. LET THE BEAM BE FIXED AT ONE END,
ANDP A LOAD, P, BE APPLIED AT THE FREE END._This
is a part of Case L, page 109, and Fig. 87 is applicable. The moment of P,
in reference to any point on the axis, is PX., Hence TPX is simply PX,
which, substituted in Equation (140), gives

P
ab = ol g Xtz
P
.'.40: m!X’w ................ tesscecrsannnse (141)

This equation has been deduced directly from the figure. It now remains
to find the sum of all the values of X’z, which result from giving to X all pos-
sible values from X =0to X =1* To do this, construct a figure some prop-
erty of which represents the oxpression, but which has not necessarily any
other relation to the problem which is being solved. If X be used as a linear
quantity, X? may be an area and X’z will be a small volume. These condi-
tions are represented by a pyramid, ¥Fig. 56, in which

AB =1 = the altitude, and the base BCDE is a square, whose sides, BC
and CD, each = I. Let bede be a section. parallel
to the base, and make another section infinitely
near it, and call the distance between the two sec-
tions 2.

Then A6 = X = be = cd,

X? = area bede, and

X?z = the volume of the lamina

bede,

which is the expression sought. The sum of all
the laminge of the pyramid which are parallel to
the base is limited by the volume of the pyramid,
and this equals the value of the expression ZX?z
between the limits 0 and {. The volume of the
pyramid is the area of the base (= I?) multiplied by one-third the altitude
(i), or 3%, which is the value sought.

* This by the Caloulus becomes [ z*dz® = i3,
o
10 ’
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rpe
8ET
which is the same as Equation (§7).
The value of X?z may also be found by statical moments as follows :—Let
ABC, Fig. 57, be a triangle, whose thickness is unity, and
¢ which is acted upon by gravity (or any other system of paral-
lel forces which is the same on each unit of the body). Take
y an infinitely thin strip, be, perpendicular to the base, and
let AB =1 = BC,
b B Ab= X = bc, and
F1g. 57. p = the weight of a unit of volume,
Then Xz = the area of the infinitely thin strip bc, and
pXz = the weight of the strip d¢, and
pX*z = the moment of the strip, when A is taken as
the origin of moments. If the weight of a unit of volume be taken as a unit,
the moment becomes X*z, which is the quantity sought, and the value of
T X?z from 0 to [ is the moment of the whole triangle ABC. Its area is 3%,
and its centre of gravity %l to the right of A. Hence the moment is }I* as
before found. *

Henoe, AQ =

119. CASE II.—LET THE BEAM BE FIXED AT ONE END,
AND UNIFORMLY LOADED OVER ITS WHOLE LENGTH.—
This is the same as a part of Case II., page 101, and Fig. 89 is applicable.

Let X be measured from the free end, and
w = the load on a unit of length; then
©wX = the load on a length X, and
$X = the distance of the centre of gravity of the load from the section
which is considered.
Hence the moment is }wX*, which equals ZPX, and Equation (140) becomes

3,
ab_2E X3z, and

AC = 555 2E1 ZX’z = the total deflection.

To find the value of =Xz, observe, in Fig. 56, that X?2 is the volume of
the lamina bcds, and this multiplied by the altitude of A — dede, which is X
gives X*z, the expression sought. Hence the sum sought is the volume of the
pyramid A — BCDE, multiplied by the distance of the centre of gravity of
the pyramid from the apex; or,

2 x §ix =414
wl* wi3

AC_SEI R eeeererovens (142)

where W isthe total load on the beam.

=1
* This may be written £ X%z = §I3
z=0
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120. CASE III.-LET THE BEAM BE SUPPORTED AT
1I'TS ENDS AND LOADED AT THE MIDDLE BY A WEIGHT P,
as in Fig. 40. The reaction of each support is } 7, and the moment is }PX,
and Equation (140) becomes

P /
® =gz X
But in this case the greatest deflection is at the middle, and the limits of
X2 are 0 and 1I. Hence, in Fig. 56, let the altitude of the pyramid be I,
and each side of the base also }J, and the volume will be

$x3xdof 3 =#I*

PP
. . AO - —-— m’

which is the same as Equation (73).

121. OASE IV, LET THE BEAM BE SUPPORTED AT ITS
ENDS AND UNIFORMLY LOADED, AS IN FIG. 42.

w being the load on a unit of length, the reaction of each support is i,
and its moment at any point of the beam is 1w/ X. On the length X there is
a load wX, the centre of which is at } X from the point considered; hence its
moment is }wX*, and the total moment is the difference of these moments;

0 ZPX = dwlX — jwX3,
and Equation (140) becomes

ab = X'z — X32),

)
‘ 71
and the total deflection at the middle is,

40 =2 (ko0 — 52
= 2E-1(==0 7 a0 ”)‘

The values of the terms within the parentheses have already been found,
and by substracting them we have

5 wit

AG:@W'

122. REMARKS ABOUT OTHER CASES.—This method, which
appears so simple in these cases, unfortunately becomes very complex in many
other cases, and in some it is quite powerless. To solve the 9th and 10th
cases, pages 124 and 125, necessitates an expression for the inclination of the
curve, 80 that the condition of its being horizontal over the support may be
imposed upon the analysis, - But thé 9th case may be easily solved if we find
by any process that the weight which must be suspended at the outer end of

.
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the beam to make it horisontal over the support is {PI divided by AC, Fig.
47. For the reaction of the support is } P+ P, ;

... PX=P,(AC+X)—(}P+P)X
=P, AC—-}PX
={Pi—}PX

PiXz - 4PX*2
ab = f———EI——-—,

and the deflection at the centre = } sz (IZXz — AZX%3) taken between the

limits 0 and $2.
The part SXz is the area of a triangle whose base and altitude are each },
.*. 32Xz = {i*, and £X*2 between the limits 0 and }, is #J* .. AC (Fig. 55),

_Pr
T192EI

All these expressions contain 7, the value of which remains to be found by
the graphical metibd.

123. MOMENT OF INERTIA OF A RECTANGLE.
Regquired the moment of inertia of a rectangle about one end as an azis.

Let ABCD, Fig. 58, be a rectangle. Make BG perpendicular to and equal
AB, and complete the wedge G — ABCD.
Let Aa = the area of a very small surface at E,
and y = AF = EF, then
yAa = the volume of a very small prism EF,
and this multiplied by y gives
y*Aa=the moment of inertia of the elemen-
tary area at E, which is also the
statical moment of the prism EF,
and

Yy*Aa=I=the moment of inertia of the rec-
tangle ABCD.
Hence the moment of inertia of the rectangle is Fiea. 68,
represented by the statical moment of the wedge
G — ABCD. I

then the volume of the wedge is
bd x }d = bt
and the moment = $bd® x id = 3bd®............ Ceceeees veneeas.)143)
If the axis of momentn'puses through the centre of the rectangle, and
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parallel to one end, we have BE = @B = }d in Fig. §9. Hence the moment
of inertia of the rectangle =

2xbxidxidx % of }d = 15 0d®
which is the same as Equation (51).

124. THE MOMENT OF INERTIA OF A TRIANGLE about
an axis parallel to the base and passing through the vertex is, in a similar
way, the statical moment of the pyramid ABCDE, Fig. 60.

Let & = CB = base of the triangle, and

d= AB = BD = CFE = altitude of the triangle and pyramid and sides
of the base of the pyramid.

The volume of the pyramid = }bdd®.

The centre of gravity is {d from the apex, consequently the statical moment
is $dd? x §d = {bd>.

But in a triangular beam the neutral axis passes through the centre of grav-
ity of the triangle, and it is desirable to find the moment of inertia about an
axis which passes through the centre and parallel to the base.

This may be done as in the preceding Article; but it may be more easily

Fia. 59.

done by using the formula of reduction, which is as follows :—The moment of
inertia of a figure about an axis passing through its centre equals the moment
of inertia about an axis parallel to it, minus the area of the figurs multiplied by
the square of the distance between the azes. (See Appendix.)

This gives for the moment of inertia of a triangle about an axis passing
through its centre and parallel to the base

108° —bd x (38) = b ..ot (143)

125. THE MOMENT OF INERTIA OF A CIRCLE may be
represented in the same way, but it is not easy to find the volume of the
wedge, or the position of its centre of gravity, except by an analysis which is
more tedious than that required to find the moment directly, as was done in
Equation (61). But it may be found practically, by those who can only pers.
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form multiplication, as follows :—Make a wedge-shaped piece out of wood,
or plaster-of-Paris, or other convenient material, the base of which is the sem-
icircle required, and whose altitude equals the radius of the eircle, as shown
in Fig. 60a; then find its volume by immersing it in a liqunid and measuring
the amount of water displaced. Then determine the horizontal dietance to
the centre of gravity of the wedge from the centre of the circle by balancing
it on a knife edge, holding the edge of the knife under the base of the wedge,
and parallel to the edge, ab, of the wedge, keeping the side vertical, and meas-
uring the distance between the edge ad and the line of support. Then the
statical moment of the wedge, which equals the moment of inertia of the
semicircle, is the product of the volume multiplied by the horizontal distance
of the centre from the edge, and twice this amount is the moment of inertia
of the whole circle. Its value for the whole circle, or for both wedges, is
s,

There are, however, many methods of calculating the moment of inertia of
a circle without using the Calculus. The following appears as simple as any
of the known methods :—

The moment of inertia of a circle is the same about all its diameters. Hence
the moment about X in the figure, plus the moment about ¥, equals twice the
moment about X, The distance to any point 4 is p, and equals yz* +y*;
or p? =* + y*; and if Aa be an elementary area, as before, we have

234 2* = 3Aa z* + EA_ay' = zE;p',

Y

a
Fia. 60a

Fic. 605.

the latter of which is called the polar moment of inertia, in reference to an
axis perpendicular to the plane of the circle, and passing through its centre C.
To find the value of ZAa p?, take a triangle whose base and altitude are each
equal to 7, the radius of the circle, and revolve it about the axis through C,
and construct an infinitely small prism on the element Aa as a base.

‘We have p = C4 = AB, Fig. 60c.
Aap = volume of the small prism AB.
Aap CA =2ap® = the statical moment of 4B,
which expression is of the form of the quantity sought.

Hence Aa p? is the product of the volume of the solid generated by the trian-
gle, multiplied by the abscissa of its centre of gravity from C. The solid is
what remains of a cylinder after a cone has been taken out of it, the base of
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the oone being the upper base of the cylinder, and the apex of which is at the
centre of the base of the cylinder. Hence the volume of the solid is the vol-
ume of the cylinder, less the volume of the cone;

or mr? x r—mrt x ir =§nrd,

If now the solid be divided into an infinite number of pieces, by planes
which pass through ite axis, each small solid will be a pyramid, having its
vertex at C, and the abscissa to the centre of gravity of each will be 7 from
C. Heace we finally have

SAa p? = 7rd x Ir = }mrd,
which equals 22Ag 2*,
o ZAREE =4t e ceaeees (144)

126. MOMENT OF INERTIA OF OTHER SURFACES.—
The general method indicated in the preceding articles is applicable to sur-
faces of any character, and with careful manipulation approximations may be
made which will be very nearly correct, and, as we have seen above, in some
cases exact formulas may be found. 4

127. VIBRATIONS OF BEAMS._If a load be placed suddenly
upon a beam, and be left to the action of the elastic forces, it will vibrate.
Or if a load is upon the beam and the dedection be increased or decreased by
an external force, and then left to the action of the elastic forces, it will
- vibrate the same as before. Take the case shown in Fig. 86, and suppose
that the weight is applied suddenly.

Let 2 be the variable deflection ; then from Eq. (57) we find that the pres-
sure, P, which will produce this deflection is

P = 81—?—1'5,
and hence the pressure which is still available for producing the maximum
deflection is
3EI

= 49
From Mechanics we have Z—;f = the acceleration and §- -Z—:—: = the moving pres-
= Sl_ﬂj.l (4 —2)
Integrating once gives
% = 3%;1 (242 — 2*)

.-.d¢=11/£ %
8gEI V248 — 88
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.'.8=l1/ BTI;_I"rdn-‘:;—
"_'*"1/3%:*“1@‘

hence they are isochronous. The weight of the beam has been neglected.
We would find a similar expression if the beam were uniformly loaded, or if
supported at its ends.

For ¢ = A4, we have
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CHAPTER VL
TRANSVERSE STRENGTH.

128. STRENGTH OF RECTANGULAR BEAMS.—The the-
ories which have been advanced from time to time to explain
the mechanical action of the fibres, have been already given in
Chapter IV.

First, consider the common theory, according to which the
neutral axis passes through the centre of gravity of the trans-
verse sections, and the strain upon the fibres is directly propor-
tional to their distance from the neutral axis.

Continuing the use of the geometrical method, let Fig. 61
- represent a rectangular beam
which is strained by a force P
applied at any pojnt. Let de be
on the neutral axis, and @b repre-
sent the strain upon the lowest
fibre. Pass a plane, de—cb, and
the wedge so cut off represents
the strains on the lower side,and
the similar wedge on the other
side represents the strains on the
upper side.

Let 2 = the ultimate strain
upon a unit of fibres most re-
mote from the neutral axis on the side which first ruptures, on
the hypothesis that all the fibres of the unit are equally
strained, and & = the breadth and & = the depth of the beam.

Let ab = R ; then, the total resistance to compression = 3 /20
x 3d = }Rbd, = the volume of the lower wedge; and the mo-
ment of resistance is this value multiplied by the ordinate to
the centre of gravity of the wedge from de, which is § of 3=
3d; consequently the momens is
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e 2L

and as the moment of resistance to tension is the same, te fotad
moment of resistance 18

bV (145)

which equals the moment of the applied or bending forces.

If the beam be fixed at one end and loaded by a weight, P,
at the free end, we have for the dangerous section, or that most
liable to break,

Pl = *Rbd’.

In rectangular beams the dangerous section will be where the
sum of the moments of stresses is greatest, the maximum values
of which for a few cases are given in a table on page 128.
Using those values, and placing them equal to } Rba? and we
have for solid rectangular beams at the dangerous section, the
following formulas:—

FOR A BEAM FIXED AT ONE END AND A LOAD, P, AT THE FREE
END;

Pl=3Rb.....cccocovvvvienennn. (146)
AND FOR AN UNIFORM LOAD;
FWI=3RbA . ..coveveeeniiinnin.n. (147)

FOR A BEAM SUPPORTED AT ITS END8 AND A LOAD, P, AT THE
MIDDLE;

IPI=3RbA . cccecvvveiriinnnn.n. (148)
AND FOR AN UNIFORM LOAD;

FWI=4RbA ..o cvvneiiiniiiiiiass (149)
AXND FOR A LOAD AT THE MIDDLE, AND ALSO AN UNIFORM LOAD;

2P + W) =4Rbd*............... (150)

For A BEAM FIXED AT BOTH ENDS AND A LOAD, P, AT THE
MIDDLE ;

FPL=3RbA. ...ccocvvviiiiiinnnn. (151)
AND FOR AN UNIFORM LOAD, END SECTION ;
AWE=3RbP...cveeninennnnnnn... (152)

MipDLE SECTION §

AW =3RbP.eeeeinnnninnnnnn.. (153)




TRANSVERSE STRENGTH. 155

’

These expressions show that in solid rectangular beams the
strength varies as the breadth and square of the depth, and
hence breadth should be sacrificed for depth. In all the cases,
except for a beam fixed at the ends, it appears that a beam will
support twice as much if the load be uniformly distributed over
the whole length as if it be concentrated at the middle of the
length. The case in which a beam is fixed at both ends and
loaded at the middle has given rise to considerable discussion,
for it is found by experiment that a beam whose ends are fixed
in walls of masonry will not sustain a8 much as is indicated by
the formula, and also that it requires considerably more load to
break it at the ends than at the middle, but the analysis shows
that it is equally liable to break at the ends or at the middle.
But it should be observed that there is considerable difference
between the condition of mathematical fixedness, in which case
the beain is horizontal over the supports, and that of embedding
a beam in a wall. For in the latter case the ‘deflection will
extend some distance into the wall,

Mr. Barlow concludes from his experiments that Equation
(151) shonld be

FPL=3Rb........oeeennannnn. (154)

and this relation is doubtless more nearly realized in practice
than the ideal one given above. In either case, it appears that
writers and experimenters have entirely overlovked the effect
due to the change of position of the neutral axis, which must
take place. It has been assumed that the neutral axis coincides
with the axis of the beam, and that its length remains unchanged
during flexure ; but if the ends of the beam are fixed, the axis
must be elongated by flexure, or else approach much nearer the
concave than the convex side, or both take place at the same
time, in which case the moment of resistance will not be } Rbda?.
The phenomena are of too complex a character to admit of a
thorough and exact analysis, and it is probably safer to accept
the results of Mr. Barlow in practice than depend upon theo-
retical results. :
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129, moopuLUs oF RUPTURE.—When a beam is sup
ported at its ends, and loaded uniformly over its whole length,
and also loaded at the middle, we find from Equation (150)

in which W may be the weight of the beam. Beams of known
dimensions, thus supported, have been broken by weights placed
at the middle of the length, and the corresponding value of &
has been found for various materials, the results of which have
been entered in the table in Appendix I1I. This is called the
Moburus oF Ruprurg, and is defined to be the strain at the
instant of rupture upon a square inch of fibres most remote
Jrom the neutral awis on the side which first ruptures. It
would seem from this definition that %2 should equal either the
tenacity or crushing resistance of the material, depending upon
whether it broke by crushing or tearing, but an examination of
the table shows the paradoxical result that it never equals
either, but is always greater than the smaller and less than the
greater.

The tabulated values of R being found from experiments
upon solid rectangular beams, they are especially applicable
to all beams of that form, and they answer for all others that do
not depart largely from that form ; but if they depart largely
from that form, as in the case of the X, (double 7°) section, or
hollow beams, or other irregular forms, the formulas will give
results somewhat in excess of the true strength; and in such
cases Barlow’s theory gives results more nearly correct.

But if, instead of /2, we use 7" or C, whichever is smaller, in
the formulas which we have deduced, and suppose that the
neutral axis remains at the centre of the beam, we shall always
be on the safe side; but there would often be an excess of
strength, as, for instance, in the case of cast-iron the actnal
strength of the beam would be about twice as strong as that
found by such a (,omputatlon

The dlﬁiculty is avoided, practles.lly, by using such a small
fractional part of 12 as that it will be considered perfectly safe.
This fraction is called the coefficient of safety. The values
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commonly unsed for beams are the same as for bars, and are
given in Article 43.

Experiments should be made upon the material to be used in
a structure, in order to determine its strength; but in the ab-
sence of such experiments the following mean values of % are
used :—

850 to 1,200 1bs. for wood,
10,000 to 15,000 1bs. for wrought-iron, and
6,000 to 8,000 Ibs. for cast-iron.

130. PRACTICAL FORMULAS.

If B = 1,000 for wood, and
. 12,000 for wrought-iron,

we have for a rectangular beam, supported at its ends and

loaded at the middle of its length,
P = 666lbd2 for wooden beams; and
0
P = §—O(Z)—E2 for wrought-iron beams.

The length of the beam, and the load it is to sustain, are
generally known quantities, and the breadth and depth are
required ; but it is necessary to assume one of the latter, or
assign a relation between them. For instance, if the depth
be n times the breadth, the preceding formulas give

b— S/ Pl 8 /Pin

see andd =4/ e forwood....... (156)

VAR, / Pln
=V 8000* - 5
and § 8000 > 2" \/ 8000 for wrought-iron ; (157)

131. THE RELATIVE STRENGTH OF A BEAM under
the various conditions that it is supported or held is as the mo-
ment of the applied forces; hence, all the cases which have
been considered may, relatively, be reduced to one, by finding
how much & beam will carry which is fixed at one end and
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loaded at the free end, Equation (146), and multiplying the
results by the following factors :—

FACTORS,

Beam fixed at one end and loaded at the other.......... 1
“ “ « “ uniformly loaded............ 2
Beam snpported at 1ts ends and loaded at the middle..... 4
“ uniformly loaded...... .. 8

Beam fixed at one end and supported at the other, and
. uniformly loaded ................... i ... 8
Beam fixed at both ends and loaded at the middle....... 8
€« oo« “ “  uniformly loaded.......... 12

If it is required to know the breadth of a beam which will
sustain a given load, find &, from Equation (146); and for a
beam in any other condition, divide by the factors given above
for the corresponding case.

If the depth is required, find @, from Equation (146), and
divide the result for the particular case desired by the square
root of the above factors.

132. EXAMPLES.

1. A beam, whose depth is 8 inches, and length 8 feet, is supported at its
ends, and required to sustain 500 pounds per foot of ite length ; required ita
breadth so that it will have a factor of safety of 1%, R being 14,000 pounds.

From Equation (146) we have,
6Pl 6x500x8x8x12 ke
R 1400x8 = Ot inches;
and by examining the above table of factors we see that this must be divided
by 8; .*. Ans. 8-% inches.

2. If I =10 feet, P at the middle = 2,000 Ibs., b = 4 inches, B = 1,000 1bs.,
required d. Ans. 9.48 inches.

8. If a beam, whose length is 8 feet, breadth is 8 inches, and depth 6 inches,
is supported at its ends, and is broken by a weight of 10,000 pounds placed at
the middle, and the weight of a cubic foot of the beam is 60 pounds; required
the value of B. Use Equation (150).

4. If R = 80,000 1bs., ! = 12 feet, b = 2 inches, d = 5 inches, how much
will the beam sustain if supported at its ends and loaded uniformly over its
whole length, coefficient of safety % ? Ans, W = 9,259 1bs.

5. A wooden beam, whose length is 12 feet, is supported at its ends; re-
quired its breadth and depth so that it shall sustain one ton, uniformly distri-

b=
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buted over its whole length. Let R = 15,000 lbs., coefficient of safety 1';, and
depth = 4 times the breadth. Ans, b = 2.08 inches
d = 8.32 inches,
6. A beam is 2 inches wide and 8 inches deep, how much more will it sustain
with ite broad side vertical, than with it horizontal ?
AU wrought-iron beam 12 feet long, 2 inches wide, 4 inches deep, is sup-
ported at its ends. The material weighs } 1b, per cubic inch ; how much load
will it sustain uniformly distributed over its whole length, R = 54,000 lbs. ?
Ans. Without the weight of the beam, 15,712 lbs.
8. A beam is fixed at one end ; I = 20 feet, 5 = 1} inch, B = 40,000 lbs. ;
weight of a cubic inch of the beam }1b. Required the depth that it may sus-
tain its own weight and 500 lbs. at the free end. Ans. 4.05 inches.
9. The breadth of a beam is 8 inches, depth 8 inches, weight of a cubic foot
of the beam 50 pounds, B = 12,000 ; required the length so that the beam

ghall break from its own weight when supported at its ends.
Ans, § = 175.27 feet.

133. RELATION BETWEEN STRAIN AND DEFLECTION,
—When the strain is within the elastic limit we may easily find
the greatest strain on the fibres corresponding to a given de-
flection. For instance, take a rectangular beam, supported at
its ends and loaded at the middle of its length, and we have
from Equation (148)

..... P=377"

and from Equations (73) and (51)
D

4=1 T which becomes, by substituting P from the pre-

ceding,

6Fd
2

EBxamples.—1. If I = 6 feet, b = 1} inch, & = 4 inches, coefficient of elas-
ticity = 25,000,000 lbs, is supported at its ends and loaded at the middle so as
to produce a deflection at the middle of 4 = % inch; required the greatest
strain on the fibres. Also required the load.

2. On the same beam, if the greatest strain is R = 12,000 Ibs., required the
greatest deflection. :

8. If the beam is uniformly loaded, required the relation between the
greatest strain and the greatest deflection.

WR=2ZCZ40 ee...(158)
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134, HOLLOW RECTANGULAR BEAmMS.—If a rectangular
beam has a rectangular hollow, both symmetrically placed in
reference to the neutral axis, as in Fig. 62, we may
b find its strength by deducting from the strength of
[} a solid rectangular beam the strength of a solid
d|{|¢ beam of the same size as the hollow. But in this
case, when the beam ruptures at &, the strain at &’
will be less than . As the strains increase di-
rectly as the distance of the fibres from the neutral
axis, we have, if 4 and &' are the depth of the outside and
hollow parts respectively,

Fia. 62.

3d:3d :: R : strain atb’:R%—.

If " = the breadth of the hollow, the stress on that part, if it
were solid, would be, according to Equation (145),
d’) e var
(B var =127,
which, taken from Equation (145), gives for the resistance of a
hollow rectangular beam,

—b'd®
%Rbd" bd

If the hollow be on the outside, as in Fig. 63,
forming an H section, the result is the same.

b
Fie. 68.

133. IF THE UPPER AND LOWER FLANGES ARE UN-
EQUAL it forms a double T, as in Fig. 64. Let the notation
be as in the figure, and also &, equal the distance from the neun-
tral axis to the upper element, and « the distance from the
neutral axis to the lower element.

To find the position of the neutral axis, make the statical
moments of the surface above it equal to those below it. This
gives
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d’ b' (dl_} dl) + *b//l (dl — dl)’ — dll 'bll (w — id[’) + %_ ”III
L (160)
Wealso haved, =d — e =d + d' + d""" — »..(161)
These equations will give  and d,. :

Fra. 64.

Constructing the wedges as before, and the resistance to com-
pression is represented by the wedge whose base is b’ @, and
altitude R, menus the wedge whose base is (8’ — 4"’) (d, — d')

U

and altitude % Z 2. Hence the resistance to compression is

4 —d

IRV — 5= R — ") (d— @) '

The centre of gravity is at § the altitude, or 44, for the for-
mer wedge, and §(d; — &) for the latter, and if the volumes be
multiplied by these quantities respectively, it will give for the
moment of resistance to compression

IRV dE— % g(b’ ") (@, — )P
; 11
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Next consider the resistance to tension. Since the strains on
the elements are proportional to their distances from the nen
tral axis, therefore

d, : »:: 2: strain at the lower side of the section = % 2,

and similarly,

dy:(x—d"’):: R: strain at the opposite side of the lower
flange = 72— (z—a’).
Hence the tensive strains will be represented by a wedge whose

base is 6"z and altitude —g—z, minus a wedge whose base is

@ —=0")(@—a" and altltude A (z — d"). Hence the mo-

ment of resistance is
4} — b” % @ —0")y(@—a’)y
The total moment of resistance is the sum of the two moments, or
3 —2—5: [b’ at— 0 =@ —ad)P+8'a— @ —0b")
(= — d”)"] ........................... (162)

For a single 7" make %" and &” = 0 in the above expression.

‘The method which has here been applied to rectangular
beams may be applied to beams of any form; but it often re-
quires a knowledge of higher mathematics to find the volume
of the wedge, and the position of its centre of gravity; or resort
must be had to ingenious methods in connection with actual
wedges of similar dimensions.

136. TRUE VALUE OF ¢, AND AN EXAMPLE.—In this
-and similar expressions
d, = the distance from the neutral axis to the fibre most re-
mote from ¢t ON THE SIDE WHICH FIRST RUPTURES.
.dy is usually taken as the distance to the most remote fibre,
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without considering whether rupture will take place on that
side or not; but this oversight may lead to large errors.

For example, let the dimensions of a cast-iron double T-beam
be as in Fig. 65, and 228 inches between the
supports. Required the load at the middle
necessary to break it.

The position of the neutral axis ig found from
Equations (160) and (161) to be 7.96 inches from
the lower side, and 11.54 inches from the upper.
As cast-iron will resist from four to six times as
mueh to compression as to tension—this beam
will rupture on the lower side first; hence &, in
the equation = 7.96 inches. As the valueof 22 :
is not known, take a mean value = 36,000 lbs. The moment
of the rupturing force—neglecting the Wewht of the beam—is
1 Pl, which placed equal to Expression (162) and reduced gives
P = %é X §,%%Q x 1,672 = 132,000 Ibs. = 58.9 tons gross.

Had we used d; = 11.54, it would have given 2 = 40.0 tons.
Such beams actually broke with from 50 to 54 tons; or, in-
cluding the weight of the beam, with a mean value of 524 tons.

By reversing the problem, and using 524 tons for P, we find
that 2 is a little more than 32,000 pounds. Had this value of
R been used in the first solution, and d; made equal 11.54, it
would have given for P a little more than 36 tons, which would
be the strength if the beam were inverted. If the upper flange
were smaller or the lower larger, the discrepancy would have
been greater.

The strain upon a fibre in the upper surface is to the strain
upon one in the lower surface as d; to #; hence, if the material
resists more to compression -than to tension (as cast-iron), it
should be so placed that the small flange shall resist the former,
and the large one the latter. If a cast-iron beam be sup-
ported at its ends, the smaller flange should be uppermost, and
as it resists from four to six times as much compressnon as ten-'
sion, the neutral axis should be from four to six times as far
from the upper surface as from the lower, for economy. Uslng
the same notation as in Fig. 64, and we have,

>
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d, __ greatest compressive strain
- ]
o

greatest tensive strain
and for economy we should have,

@y ultimate compressive strength

® __ ultimate tensile strength

The ultimate resistance of wrought-iron is greater for tension
than for compresaion ; hence, if a wrought-iron beam is sup.
ported at its ends, the heavier flange should be uppermost.

The proper thickness of the vertical web can bc determined
only by experiment, and this has been done, in a measure, by
Baron von Weber, in his experiments ou permanent way.

137. EXPERIMENTS OF BARON VON WEBER for deter-
mining the thickness required for the central web of rails.

Baron von Weber desired to ascertain what was the moni-
mum thickness which could be given to the web of a rail, in
order that the latter might still possess a greater power of re-

sistancc to lateral forces than the fastenings by which it was

Fie. 85a.

secured to the sleepers. For this purpose a piece of rail 6 feet
in length, rolled, of the best iron at the Laurahutte, in Silesia,
was supported at distances of 35.43 in., and loaded nearly to
the limit of elasticity (which had been determined previously by
experiments on other pieces of the same rail), and the deflec-
tions were then measured with great care by an instrument

capable of reglsterxng 1oy in. with accuracy. This having
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been done, the web of the piece of rail was planed down, and
each time that the thickness had been reduced 8 millimetres
the vertical deflection of the rail under the above load was
again tested, and the rail was subjected to the following rough
but practical experiments. The piece of rail was fastened to
twice as many fir sleepers by double the number of spikes
which would be employed in practice, and a lateral pressure
‘was then applied to the head of the rail by means of a lifting-
jack, until the rail began to cant and the spikes were drawn.
The same thing was then done by a sudden pull, the apparatus
used being a long lever fastened to the top of the rail, as shown
in Fig. 65a. The lifting-jack and the lever were applied to
‘the ends of the rail, and the web of the latter had, in each case,

Fi1a. 650,

to resist the whole strain required for drawing out the spikes.
The results of the experiments made to ascertain the resistance
of the rail to vertical flexure with different thicknesses of web,
and under a load of 5,000 lbs., were as follows :—
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mcxm-o: web. Vertical mm
15 millimetres = O 59 ......... Ceceen 0. 016
12 “ 047T......... eeees.0.016
9 « 035...ccivennnnnn. 0.019
6 « 024....c00vennnnn. 0.0194
3 “ 012...cciveeennnn. 0.022

These results showed ample stiffness, even when the web was
reduced in thickness to 0.12 in. To determine the power of
resistance of the rail to lateral flexure, an impression of the sec-
tion was taken in lead each time that the spikes were drawn.

The forces applzed in these experiments were very far greater
than those occurring in practice,yet it was found that with the
web 12, 9,and even 6 millimetres thick, no distortion took place,
and only when the thickness of the web was reduced to 3 milli-
metres (0.12 in.) was a slight permanent lateral deflection of the

Fia. 650.

head caused just as the spikes gave way. The section shown in
Fig. 655 had then been reduced to that shown in Fig. 65c¢.
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Next, a rail, with the web reduced to 3 mill. (0.12 in.) in
thickness, was placed in the line leading to a turn-table on the
Western Railway of Saxony, where it has remained until the
present tme, 1870, receiving the shocks due to'engines passing
to and from the turn-table more than one hundred timmes daily.

It follows from these experiments that the least thickness
ever given to the webs of rails in practice is more than suffi-
cient, and that if it were possible to roll webs % in. thick, such
webs would be amply tirong, if it were not that there would
be a chance of their being torn at the points where they are
traversed by the fish-plate Dolts. Baron von Weber concludes
that webs § in. or 4 in. thick are amply strong enough for rails
of any ordinary height, and that, in fact, the webs should be
made a8 thin as the process of rolling and as the provision of
sufficient bearing for the fish-plate bolts will permit.

138. ANOTHER GRAPHICAL METHOD.—If elementary
processes are to be used for determining the strength, the fol-
lowing method possesses many advantages over the former.

Since the strains vary directly as their dis-
tance from the neutral axis, the triangle %
ABC (Fig. 66), in the rectangle BCDE,
represents the compressive strains if each
element of the shaded part has a strain -
equal to /2; and its moment is /2 times the

re—=)

=

—/

B s

area multiplied by the distance of the een-
tre of gravity of the triangle from the neu- Fic. G6.
tral axis ; or, ‘

\ Bx(Bx} of 3d) x } of ¥d = (5 R,

and the moment of tensile resistance is the same, hence the
total moment is double this, or } /2547, as found by the preceding
process.

139. IF A SQUARE BEAM HAVE ONE OF ITS DIAGONALS
vERTICAL (Fig. 67), the neutral axis will coincide with the
cther diagonal. Take any element, as @b, and project it on a
line ¢d, which passes through A4 and is parallel to B, and draw
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the lines Oc and Od, and note the points fand g where they
intersect the line ab. If the element were at od, the strain upon
it would be R, multiplied by the area of cd, or simply R.cd;
but becaunse the strains are directly proportional to the distances
of the elements from the neutral axis, the strain on @b is R.fg.
Proceed in this way with all the elemnents and construct the
shaded figure. The strains ou the upper part of the figure

Fi1a. 67

A BC, which begin with zero at B(, and increase gradually to
12, at A, will be equivalent to the strains on the shaded figure
AO,if the strain is equal to 2 on each unit of its surface.
Hence the total strain on each half is the area of the shaded
part 4O, multiplied by &, and the moment of the strain of
each part is this product multiplied by the distance of the
centre of the shaded part from the axis BC.
By similar triangles we have

Aa:ab:: AB: BC,and
cd=ab: fg:: AO:2:: AB: Baor AB — Aa;
@ being the distance of fy from O.
From these eliminate ab, and find

o = Hab—fy) =4 g 55 (4o

hence the curve which bounds the shaded figure is a parabola
which is tangent to 4 B, and whose axis is parallel to BC.
Let d = one side of the square, then
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y2d = BC,
% y2d = A0, and _
1 v2d = the widest part of the shaded figure.

The area of a parabola is two-thirds the area of a circumsecribed

rectangle.
Hence the area of A0 is

$x3 y2dx % 22 = }d%,

and the moment is
a8

1%} y2d = m,

and the moment of both sides, multiplied by £, is
7id
R (—;79 .......................... (163)

If = d in Equation (145) and the result compared with the
‘above, we find :—

. The strength of asquare beam with its side vertical : strength
of the same beam with one of its diagonals vertical :: y/2:1
or as 7 : b nearly.

So that increased depth merely is not a sufficient guarantee
of increased strength. The reason why the strength is dimin-
ished when the diagonal is vertical, is because there is a very
small area at the vertex where the strain is greatest, but when
a side is horizontal the whole width resists the maximum strain.

140. 1BREGULAR sEcTIONS.—This method is applicable
to irregular sections, as shown by the following example.

Let Fig. 68 be a cross section of a beam. In a practical case
it may be well to make an exact pattern of the cross section, of
stiff paper or of a thin board of uniform thickness. To find
the position of the neutral axis, draw a line on the pattern
which shall be perpendicular to the direction of the forces
wkich act upon the beam, that is, if the forces are vertical the
line will be horizoutal. In a form like Fig. 68, this line will
naturally be parallel te the base of the figure. Then balance
the pattern on a knife-edge, keeping the base of the figure (or
the léne previously drawn) parallel to the knife-edge, and when
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it is balanced the line of support will be the neutral axis. Pro-
ceed to construct the shaded part as shown in the figure, by pro-

Fic. 68.

jecting any element, as ab on the line c¢d, and drawing cO and
d0, and noting the intersections f and g, the same as in Fig. 67.
The elements on the lower side must be projected on a line mn,
which is at the same distance from the neutral axis as the most
remote element on the upper side. The area of the shaded
part above the neutral axis should equal that below, because
the resistance to extension equals that for compression. The
area of the shaded part may be found approximately by di-
viding it into small rectangles of known size, and adding
together the full rectangles and estimating the sum of the frac-
tional parts. Or, the shaded part may be cut out and carefully
weighed and balanced by a rectangle of the same material, after
which the sides of the rectangle may be carefully measured
and contents computed. The area of the rectangle would evi-
dently equal the area of the irregular figure.

The ordinate to the centre of gravity of each part may be
determined by cutting out the shaded parts and balancing each
of them separately on a knife-edge, as before explained, keep-
ing the knife-edge parallel to the neutral axis. Thc distance
between the line of support and the neutral axis will be the
ordinate to the centre of gravity. Zhe moment of resistance
8 then jfound by multiplying the area of each shaded part by
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the distance of its centre of gravity from the neutral axts, and
multiplying the sum of the products by R.

These mechanical methods may be managed by persons who
have only a very limited knowledge of mathematics, and if
skilfully and carefully done will give satisfactory results. It
does not, however, furnish such an wniform, direct, and exact
mode of solution as the analytical method which is hereafter
explained.

141, FORMULA OF STRENGTH ACCORDING TO BAR-
LOW?’S THEORY,.—Either of the above methods may be used. One part
of the expression for the strength ir of the same form as that found by the com-
mon theory ; but instead of R we must use 7', or C—the former if it ruptures
by tension, the latter if by crushing. The other resistarce, ¢, for solid beams
is evenly distributed over the surface. For example, take a rectangular beam,
Fig. 61, and the resistance to longitudinal shearing on the upper side is ¢ b x
34d=% ¢ bd, and its moment is % ¢ bdx } of 31d = } ¢ bd?, and for both sides,
1 ¢ bd?. Hence, according to Barlow’s theory, the expression for the strength
of a rectangular beam is

[2¢ + 3T) da? for cast-iron, and

[ ¢ + 3C] bd* for wrought-iron and wood..........cc..... (164)
If the beam is supported at its ends and loaded at the middle, we have
3Pl = (3¢ +37]1bd% forcast-iron........ccvevvveennnnnnn. (165)

The volume which represents the resistance due to ¢ is always a prism, hav-
ing for its base the surface of the figure and ¢, or some fraction of ¢, for its
altitude. If the second method of illustration be used, it will take two figures
to fully illustrate the strains. For instance, if the section be as in Fig. 68, the
moment of the shaded part will be multiplied by 7 or (), as the case may be.
To find the remaining part of the moment,
find the area of each part of the transverse
section, also the distance of the centre of
gravity of each part from the neutral axis.
Then, to find the moment of resistance due to
longitudinal shearing, multiply the area of cach
part by the distance of its centre of gravity
Srom the neutral azis, add the products and d
multiply the sum by ¢. This is true for solid
sections ; but for hollow beams, 7’ and H sec-
tions, where there is an abrupt angular change’
from the flange to the vertical part of the T16. 69,
beam, the factor ¢ requires a modification.

For instance, take the simple case of a single 7', Fig. 69, in which the breadth
of the 7’is &' and its depth @', and the other notation as in the figure.

The resistance of the upper part is represented by the prism whose base is

R
-3

2,

<-
N, FE—
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bz, and whose altitude is ¢ plus the prism whose base is @' (5'—3), and whoss
altstude is % ¢. The resistance of the lower partis ¢ bd,. The total moment
of this resistance is—

¢dziz + A(B'-b) x d;'gb (z— id) + ¢bd, x }.d..

To this add the moment of resistance for dizect extension and compression,
the expression for which is of the same form as for common theory, and we
have for the total moment :—

3
do50t + L g5 —b) (a—4d) + 49 00,* + o [basP + B2 — (O — D)
1
L2 e PR ..(166)
From numerous experiments made upon cast-iron beams having a variety

of cross sections, Barlow found that j varied nearly as 7', that practically it
was a fraction of 7', the mean value of which was 0.97'

For wrought-iron he found ¢ =0.537
= 0.6 C nearly.

Peter Barlow, F.R.S., father of W. H. Barlow, F.R.8., the latter of whom
proposed the ‘‘ theory of flexure,” in an article in the Civ. Eng. Jour., Vol
xxi., p. 113, assumes that ¢ = 7'

From the above it is inferred that the practical mean values of ¢ are :—

16,000 1bs. for cast-iron.
30,000 1bs. for wrought-iron.
8,000 1bs. for wood.

Ezample.—How much will & beam whose length is 12 feet, breadth 2 inches,
depth 5 inches, sustain, if supported at its ends, and uniformly loaded over its
whole length, and ¢ = 50,000 lbs., ¢ = 80,000 lbs., and coefficient of safety }?

Ans.—11,000 1bs. nearly.

142, BEAMS LOADED AT ANY NUMBER OF POINTS.—
If the beam is loaded otherwise than has heretofore been sup-
posed, it is only necessary to find the moment of all the forces
in reference to the centre of a section and place the algebraic
sum equal to the moments of resistance. Those which act in
opposite directions will have contrary signs.

For instance, if a beam, A B, Fig. 70, rests upon two sup-
ports, and has weights P, P,, P, etc., resting upon it at dis-
tances respectively of 7y, m,, ng, etc., from one support, and
my, ma, Mg, etc., from the other, the sum of the moments of the
forces on any section (' whose distance is @ from the support
4, is

Vie — Pi(@ — n,) — Py(@ — ny)—ete.,
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to include all the terms of 2P in which » is less than . This
equals } &bd? for rectangular beams.

v Vs
........................ i R, I
........... Il‘ ?
LL Pr & r :
A x 1 B
c
L.y
g M . YO

Fia. 70.

V., the reaction of ene -support; is readily found by taking

the moments of all the external forces about B, and solving for
¥, thus :—

Vil = Pymy+ Pymy+ Pymg+ete.,, = 3 Pm
o 17‘ = Z_Il)”_?'

p
Similarly ¥, = z_lf’

also, Vi + Vo= P, + P, + Py +ete,, = 3 P.

143. A PARTIAL UNIFORM LoAD.—Let the beam be
'oaded uniformly over any portion

of its length, as in Fig. 71.
Let I = AB = length of beam;
2¢ = DE = length of the |-f-f- -
uniform load ; 45
& == AF =the distance to I.-I:G. mn.
any section ;
w = the load on & unit of length;
V = the reaction of the support 4 ;
C the centre of the load ;
LW=A0C; {y= 0B.
Then AD=1! —a,and DF = -1 + a.
Load on DF=w (w— 1, + a),
« ¢« DE =2wa.

v 1
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By the principle of moments

Vi=2wa.ly..V = 2wa Z;—.

The moment of stress at /'is
Ve—3w (x— 14 + a)?
9’“}“’%_1}70 @B @eneeeeeeeeneaennn (167)

That value of & which will make Equation (167) a maximun,
gives the position of the dangerous section. Differentiate,
place equal zero, and make , + /4, = /, and solve for z, and find

or

w:a( —%)H, ........................ (168)
th=3a=1;

h<i¥,o>h;
h>¥,2<b;
so that the maximum strain is at the centre of the loading only
when the centre of the loading is over the centre of the beam;
and in all other cases ¢t i nearer the centre of the beam than
the centre of the loading 1s.
The maximum strain is found by substituting the value of
Equation (168) in Equation (167).
The following interesting facts are also proved.

Let AD=y..a =1 — y which in Equation (168) reduces
it to

which is a maximum for ¥ = 0; hence so far as AD is con-
cerned, Equation (168¢) is a maximum when one end of the
Joad is over the support, and for this case the equation becomes

emi=i(1-%)

which is a maximumn for 7, =} 7 or 2/, =4/, or the load must
extend to the middle of the beam. Making @ =1/ =}/, and
Equation (168) becomes

o =4§l
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and these values of 7, and # in Equation (167) give for the max-
imum moment of stress,

in which W is the load on half the beam.

Equation (167) gives the stress at the middle of the load, by
making ¢ =, =}/andz =17 This gives} W/ for the stress
at the middle of the loading; hence, the maximum stress is 1%
times the stress at the middle of the loading when the load
extends from the one support to the middle of the beam.

144, cENERAL roumurLA.—The preceding methods are
easily understood, and are perhaps sufficient for the more sim-
ple cases; but for the purposes of analysis a general formula is
better, by means of which a direct analytical solution. may be
made for special cases.

Let R = the modulus of rupture, as explained in Article 120;

@ and v horizontal codrdinate axes, the former coinciding
with the axis of the beam, and y a vertical axis;

Then R du dy = the resistance of a fibre which is most re:
mote from the neutral axis ;

Let d, = distance between the neutral axis and the most re-
mote fibre; then, according to the common theory,
since the strains vary as the distance from the neu-

tral axis
d,:y:: Rdudy : resistance of any fibre = gydydu
1
f—z y? dydu = the moment of resistance of any fibre,

and the sum of all the moments of resistance of any section is

which is called the moment of rupture, and must equal the
sum of the moments of the straining forces ;

P EPr = L .. .(170)

A



=

' d,
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The second member of this equation involves the character of
the material (/) and the form of the transverse sections (d_{) ; the

latter of which may be determined by analysis, and the former
by experiment. The second member shows that for economy
the material should be removed as much as possible from the
neutral axis.

Let R’ = the strain on a unit of fibres at a distance ¢, from
the neutral axis, then

5Ps= gl ........................ (170a).
By comparing Equations (1702) and (49) we see that
E R
o et 171
P & ()

which is true so long as the strain 2’does not exceed the elastic
limit.

145. LET THE BEAM BE RECTANGULAR, } the breadth,
and 4 the depth, as in Fig. 61,

*3b +1d
Then 7 = 4/ yidy du = & bd®
0 0 '

d=%d
E{EI = } R ba? which is the same as expression (145).

146. 1IF THE SIDES OF THE BEAM ARE INCLINED to the
direction of the force, as in Fig. 72, let ¢ be the inclination of
the side to the horizontal ; then

I = 1,0d (sin*s + blcos®s)*
d, = ¥dsine + $bcos ¢

e dPrin®i + Feoss
- R % =4Rbd m] ........... (172).

* See Appendix IT.
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This expression has an algebraic minimum,* but not an alge-
braic maximum. By inspection, however, we find that the
practical maximum is found by making ¢ = 90°, if & exceeds 6.
Hence, a rectangular beam is strongest when its broad side is
parallel to the direction of the applied forces. ‘

Hence, the braces between joists in flooring, as in Fig. 73,
not only serve to transinit the stresses from one to another, but
also to strengthen them by keeping the sides vertical.

Fia. 72. Fia. 73.
If 4 = 90°, Equation (172) becomes } Rbd®. . .. ... (178).
If b = d and 7 = 45°, Equation (172) reduces to
Rd®
g (174)

(which is the same as Expression (163) ),
and if b =4, and < = 0° or 90°, it becomes
_ $L2d5.

Ilence, the strength of a square beam having a side vertical
is to the strength of the same beamn having its diagonal verti-
" cal, as

1: vd,
or y/2 to1oras 7 to 5 nearly.

In establishing Equation (172) it was assumed that the new-’
tral surface was perpendicular to the direction of the applied
forces, which is not strictly true unless the forces coincide with
the diagonal ; for in other cases there is a stronger tendency to

* See an article by the author in the Journal of Franklin Institute, Vol.
LXXYV., p. 260.
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deflect sidewise than in the direction of the depth. In this case,
as soon as the beam is bent there is a tendency to torsion. Both
these conditions make the beam weaker than when the sides
are vertical. If the tendency to torsion be neglected, the case
may be easily solved ; but the result shows the advantage of
keeping the sides vertical.

147. THE STRONGEST RECTANGULAR BEAM which can
A s be cut from a cylindrical one has the breadth
: to the depth as 1 to 4/2, or nearly as 5 to 7.

d Let 2 = A B = the breadth,
y = A C = the depth, and
D = AD = the diameter.

(4 D
Fia. 74.

Then,
y=DP—2
and Expression (173) becomes
Yoy = B (1P — o),
which by the Differential Calculus is found to be a maximum

for
e=Dy}..y=Dy}
~eiy::l: y2ornearly as 5 to 7.

Fzamples.—How much stronger is a cylindrical beam than the strongest rec-
tangular one which can be cut from it ? .
(For the strength of a cylindrical beam, see Equation (180).)
Ans.—About 63 per cent.

How much stronger is the strongest rectangular beam that can be cut from
a cylindrical one, than the greatest square beam which can be cut from it ?

148. TRIANGULAR BEAMS.—If the base is perpendicular
to the neutral axis, as in Fig. 75;  ~

Let & = A.D = the altitude, and
b = B(C = the base.

Take the origin of codrdinates at the centre of gravity of the
triangle, ¥ vertical and « horizontal. ’
“"Then, by similar triangles,
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‘}b'y”d'i‘d-’-u

ny=tBE
o[ =2/ fipdydu = 2/@1“ -
‘We also have
a = $b;
~R é = ABIP = g RAb. e, (175)

in which A is the area of the triangle.

Fia. 75. Fia. 76.

If the base is parallel to the neutral axis, as in Fig. 76, then,
by similar triangles,

d:ib::%d—y:u

su=(3d—y) 2%

+ 3d

o I =2 [ fpdydu = 2fy’udy
—3d
3 +id
=7 (g—y) y'dy = b (*)
‘We also have
4 =%

* This is more easily solved by taking the moment about an axis through
the vertex and parallel to the base, and using the formula of reduction. See
Appendix.
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R({ = A RIP= Jy RAD. .. oo (176).
1

Expressions (173) and (175) show that a triangular beam
which has the same area and depth as a rectangular one, is only
half as strong as the rectangular one.

Some authors have said that a triangular beam is twice as
strong with its apex up as with it down, but this is not always
the case. If the ultimate resistance of the material is the same
for tension as for compression, the beam will be equally strong
with the apex up or down.

If the beam is made of cast-iron, and supported at its ends, it
will be about 6 times as strong with the apex up as down; but,
if the beam be fixed at one end, and loaded at the free end, it
will be about 6 times as strong with the apex down as with it up.

149, TRAPEZOIDAL BEAM.— Reguired the strongest trap-
ezoidal beam whickh can be cut from a given triangular one.*

¢ Let A BC be the given triangle,
AN ABED the required trapezoid,
B d = CG = the longest altitude,
b=AB, do=FH, w= CF
2= CH= d1+'w,a.nd'v—DE

IJ is the neutral axis of the trapezoid,
B which passes through its centre of gravity

Fio. 7. H. We may then find :—

a=px T '

I= ‘1‘],8 3rb® 4 bty — 8b’1:”;—+85’v‘ byt — ‘ v’]
1 — RLZ 05 + bt — 3;):1:2 ;,,8])%:}— bt — ] ( 177)

wlnch is to be a maximum. By the Calculus we find, after re-
duction, that

* See an article by the author in the Journal of Frankiin Institute, Vol
XLI., third series, p. 198.
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¥ + 50 + o — 0¥ =0,
for a maximum, which solved gives
v = 0.13093b or 0.13b nearly, and hence

w = 0.13093¢ or 0.13d................ (178)
which substituted in (177) gives
I , Rd*
R Z = 0.545625 —T2—' ............. ’(179).

Dividing Equation (179) by Equation (176) gives 1.09125 ; hence
from (178) and (179) we infer that ¢f the angle of the prism be
taken gff 0.13 of ts depth, the remaining trapezoidal beam will
be 1.091 times as strong as the triangular one, which is a gain
of over 9 per cent.

In order to explain this paradox it must be granted that the
condition does not require that the beam shall be broken in
two, but that a fibre shall not be broken—in other words, the
beam shall not be fractured. The greatest strain is at the edge,
where there is but a single fibre to resist it; but, after a small
portion of the edge is removed, there are many fibres along the
line DE, each of which will sustain an equal part of the
greatest strain.

If the triangular beam were loaded so as to just commence
fracturing at the edge, the load might be increased 9 per cent.
and increase the fracture to only thirteen-hundredths of the
depth; but if the load be increased 10 per cent. it will break
the beam in two.

These results are independent of the material of which the
beam is made. If the beam be cut off § the depth, its strength
i8 found from Equation (177) to be

Rbd?
12 °
which is 0.93101 of Equation (176).
Mr. Couch found* for the mean of seven experiments on tri-

angular oak beams of equal length, that they broke with 306
pounds. The mean of two experiments on trapezoidal oak

0.465608

* See Barlow’s Strength of Materials.
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beams, made from triangular beams of the same size as in the
preceding experiments, by cutting off the edge one-third the
depth when the narrow base was upward, was 284.5 pounds.
This differs by less than half a pound of 0.931 times 306
pounds.

150, oYLINDRICAL BEAmMS.—The moment of inertia of a
circular section in which 7 is the radius, is

+7
I=sffydydu =3 [ du =4 / (* — ) du =
~r

PO
di=r;
%’ AR e (180)

If polar coordinates are used, we have
dudy = pdpds,
where p is a variable radius and ¢ a variable angle.
Alsoy = psin ¢

- r 2
g [ [
Fic. 78. ~JO 0

2+
= 3/ $(1 — o8 2¢) d = }mr*, a8 before.
0
For a circular annulus we have

I _,m ot
R = R i (™ — nb). |
By comparing Equations (180) and (145) we see that the

strength of a cylindrical beam is to that of a circumscribed
rectangular one as 57%: },oras 0589 +:1.

Also the strength of a cylindrical beam is to that of a square
one of the same area as $2Ad’ to } 2Ad (& being the diameter
of the circle),
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4 a
orasl: (*7’ =4 4/7r) or as 1 : 1.18 nearly.

It may be shown in the same sense as explained in the pre-
ceding article, that if a thin segment be removed from the
-upper and lower sides of the beam it will be stronger.

151. ELLIPTICAL BEAMS.

Let b == the conjugate axis, and
@ = the transverse axis; then
if d is vertical (Fig. 79), we have
I =¢¢ 7bd® and d, = }d.

If b is vertical (Fig. 80), we have
I =¢~b*d and d, = }b.

/&
&

b d
Fi1e. 79. Fra. 80.

152. PARABOLIC BEAMS,

el b

Fie. 81. F1ec. 82,

If b = the base, and
d = the height of the parabola, and
if d is vertical (Fig. 81), we have
I = t%bd?, and d;, = 3d.

If b is vertical (Fig. 82), then
I = #;b%d, and d, = $b.
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133. ACCORDING TO BARLOW’'S THEORY we have

dZ: [ff y'dz/d“] + [y =3P, ....cocneaunnnannn. (181)

which must be integrated between the proper limits to include the whole
section,

If the neutral axis is at the centre of the sections, and the beam is rectan-
gular, we have

arial /o fiidons) «2of ] v

which reduced gives
3Tba* + 1odd® = L[ T+ 8)bd* ;
hence, if ¢ has any ratio to 7, the law of resistance in solid rectangular beams
is the same as for the common theory only.
I ¢ = T, this becomes
L Toads.

1354. oBLIQUE sTRAINS.—IT the force be inclined to the
axis, as in Fig. 83, let § = the angle which 2 makes with the
axis of the beam.

Fia. 83.

Then P, = P cos § = longitudinal component,
P, = P sin 6 = normal component.

If K = the transverse section, then
P cos 6

e
section due to the direct pull or push. This tends directly to
diminish the tabular value of R in the formula. If the beam
be fixed at one end and P be applied at the free end, as in

Fig. 83, the equation of moments becomes

. P cos 6\ 7
Prsin 0= (B -2 )Z

which for rectangular beams becomes

= the tension or compression upon a unit of




TRANSVERSE STRENGTH. 185

< a P cos 0\bd?
PwsmB_(R— )e )75_ ....... .. ..(182)

in which 6 is always acute.

This solution does not recognize any deflection. If the di-
rection of P, does not intersect the neutral axis at the fixed end
it will have a moment.

If flexure is considered, we find the strain upon the most
remote fibre from the neutral axis at the fixed end, to which
add the strain due to a direct pull (or push), which sum should
not exceed the tabular value of 2.

From Equation (171) we have

which is the strain on a unit of the extreme fibres.
From Equation (130) we have

2 =Bl =E(pa+ )
=E(—pl+¢4)
at the fixed end where the strain is evidently a maximum.
From the Equations following (130) we find
et — g
R
which substituted above gives
s _ B A — )
g ( eql + e—ql)
_ d; Psin 0 (&9 — %)
ly (" + )

"‘R—K + d,[n (;:I_:;g)
~P=20 - 22) (515)

In the solution thus far we have supposed that rupture takes
place on the side of tension, but if it should take place on the
compressed side, we would have
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¢IR ) (e"’ + e‘q')
Py = a, (1 + & — @

The total load, P, which the beam can sustain in these cases
can be found only by a series of approximations, since P, and
¢ both involve P.

The solution of the case shown in Fig. 83a, when flexure is not

N

) 1A

N

Fia. 83b.

considered, is given in “ Bridges and Roofs,” p. 20. If flexure
is considered, the reaction at the ends will be treated as the
oblique forces, and the solution made substantially as in the
preceding case. "

~ 133, POSITION OF THE NREUTRAL AXIS FOR MINIMUM
STRENGTH,

Let 7, = the moment of inertia of the section when the axis
passes through the centre of gravity of the sec-
tion,

I = the moment of inertia of the same section about an
axis parallel to the former,
D = the distance between the axes,
A = the area of the section, and
a; = the ordinate to the most remote fibre from the
centre,
Then D + @, = the ordinate to the most remote fibre from the
gecond axis, and

I_L+AD
& a+D
which is & minimum for

T,
D=%[_1iV&+z#|
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One of the roots is positive and less than d;, and the other
is negative and greater than d,, but both give an algebraic
minimum.

For a rectangle 4 = bd, I, = 455d° and a, = {d.

’ ».D=0.07732d or — 1.077324.

“Using the positive value, we have

I
ot

which is only 0.9282 of the strength when the axis passes through
the centre. '
If the sections are circular

= 0.1547Rbd?;

D = 0.11807r
and
%’ = 074157,

which is 0.9441 of the strength when the axis passes through the
centre.

Has this analysis any physical signification? Being entirely
independent “of the character of the material, it does not
explain the difference between the values of Z2 and 7" or C.
So far as the analysis is concerned there is nothing to determine
which way the neutral axis will move from the centre.

In some cases, practically, we might have d, = @, — D; in
which case we have for a minimum ’

D:al[l +4'1 +A%i-]
1

which for rectangular beams gives
D = 1.071d or — 0.077d.
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CHAPTER VIL
BEAMS OF UNIFORM RESISTANCE.

156. GENERAL EXPRESSION.—If beams are so formed
that they are equally liable to break at every transverse section,
they are beams of uniforin resistance, and are generally called
beams of uniform strength. The former term is preferable,
because it applies with equal force to all strains less than that
which will produce rupture. In such a beam the strain on the
fibre most remote from the neutral axis is uniform throughout
the whole length of the beam. The analytical condition, ac-
cording to the common theory, is: Zhe sum of the moments of
the resisting forces must vary directly as the sum of the moments
of ‘the applied forces ; hence Equation (171) is applicable ; or

sPe=L o e (182)

A

which must be true for all values of . In addition to this
the transverse shearing strain must be provided for. To obtain

practical results it is necessary to consider

PARTICULAR CASES.

137. BEAMS FIXED AT ONE END AND LOADED AT THE
FREE END.— Fequired the form of a beam of uniform resist-
ance when it 8 fixed at one end and loaded at the free end.

1st. Let the sections be rectangular, and

y = the variable depth, and
% = the variable width.

Then 7 = {5uy® (see Equation (51)),
d; = %:'/ ) and
3 Pz = Px = the variable load.*

* For 2Pz use the general moments as given in the table in Article 109, so
far as they are applicable.
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Hence Equation (182) becomes

a. Let the breadth be constant; or » =b&; then (183) be-
comes
which is the equation of a parabola, whose axis is horizontal

and parameter is 2%? See Fig. 84.

@ .-
Fie. 84. ’ Fie. 85.

b. Suppose that the depth is constant, or y =d. Then (183)
becomes

which is the equation of a straight line; hence the beam is a
wedge, as in Fig. 85.
¢. If the sections are rectangu]al and similar, then

1b:d
— b .
=a¥
and Equation- (183) becomes -
Rb
P = Tdy"

which is the equation of a cubical parabola.
2d Let the sections be circular. Then'
= o47y* Equation (52), in which y is the
dlameter of the circle), and d; = 3y ; hence
(182) becomes
P Pr= %1 Ry,
which is also the equation of a cubical _para-
bola, as shown in Fig. 86.
3d. Let the transverse sections be 1ectauo'u1ar, and 7 constant,
the breadth and depth both being variable, then Equatlon (182)
becomes _ , .

F1a. 86.
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= .R M = R -g- ........... ..(186

Py v &y (186)
in which ¢ is a constant, = d*, 4 and & being the breadth and
depth at the fixed end. Equation (186) is the equation of the
vertical longitudinal sections, and is the equation of an hyper-

<u
Fia. 87. F1a. 88

bola referred to its asymptotes. See Fig. 87. If the value of
y from this equation be substituted in the Equation v = ¢, it
gives
216 Px*
u — W ...................... (187)

which is the equation of the horizontal longitudinal sections;
hence they are cubical parabolas, as in Fig.88. Forzand u =
216P%F . _ 6P
BP& T Rd?

4th. If the breadth is the nth power of the depth, and the
sections are rectangular, then % = 3", and Equation (183)
becomes

0,y=o,and fore=l,u=5%=

Py = FRuy? = } Ry+3,
which is the general equation of parabolas.

158, BEAMS FIXED AT ONE END AND UNIFORMLY
LOADED.— Required the form of a beam of uniform resistance
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when it 13 fixed at onc end and uniformly loaded over its whole
length ; the weight of the beam being neglected. '
The origin of coirdinates being still at the free end, we have
wz = the load on a length @, and
3wa? = the moment of the load (Equation (53) ).
Hence, for rectangular sections, Equation (182) becomes

Fw = RuP i i (188)
a. If the breadth is constant, or % = & in (188), it becomes
jwa® = $ Rby?,
which is the equation of a straight line, and hence the beam
will be a wedge, as in Fig. 89.

Fie. 89.
5. Let the depth be constant; or y = & in (188)
codwd = FRdw ;—
a parabola whose axis is perpendicular to the axis of the beam,
as in Fig. 90.

Fr1a. 90. Fia. 91,

¢. Let the sections be similar ;—

b
2 Yy

thend:d::y:u=
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.. Equation (188) becomes 3w = } R -gy' —

a semi-cubical parabola, as in Fig. 91.
d. Let I be constant, or ¢,uy® = {45d®. Then Equation (182)
becomes

8
fwa = 3R ,% ;—an hyperbola of the second order.

159. PREVIOUS CASES COMBINED.— Roguired the jform
of the beam of wuniform resistance when it is fiwed at one end
and loaded uniformly, and also loaded at the free end. -

The moment of applied forces is Pz+4wa?; hence Equation
(182) becomes, for rectangular beams,

Px 4 %w:c’ = *Ruy‘.

Hence, if the depth is constant, Pz + tws® =  Rud?;—a
parabola.

Hence, if the breadth is comstant, Pz + 4wa® = } Rby*;—a
hyperbola.

Hence, if the sections are similar, Pz + {ws* = R %y’ ;—a

gemi-cubical parabola.

160. WEIGHT OF THE BEAM consnnnnnn._Reqm'ml
the form of the beam of uniform resistance when the weight
of the beam s the only load ; the beam being fixed at one end
and free at the other.

a@. Let the sections be rectangular and the breadth constant.

Let 2 = AB; Fig. 92,

y=DC,
b == the breadth, and
8 = the weight of a unit of volume.

Then ﬁda: = the area 4 DC, and
8 fyde = the weight of ADC;

the limits of integration being 0 and a.
If Fis the centre of gravity of ADC; we have,

AF = Jryde

Syda"
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U

Fia. 92. F1c. 93.

The moment of the applied forces is the weight of ADC
multiplied by the distance Blf =e¢— AF. Hence, Equation

(182) becomes
3 f yd'” [w - ;i_z] ¥ b:‘/Q’

which reduced gives

@ = %R .................................. (189)

which is the equation of the common parabola, the axis beiﬁg
vertical.

b. Let the depth be constant. In a similar way we find
_ Judary _
od f uda:[ s } RdPu.

This solved gives

Rd Nap log. [J—»— C+uvt—u ] + (',

in which C'and O’ are constants of integration, and involve
the position of the origin of cotrdinates and direction of the
curve at a known point.

c. Let the beam be a conoid of revolution, as in Fig. 93.
We have, as before (y being the radius of the circle),

$frie] a~ T |- e

which reduced gives-
13
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= x,tl.s‘iy .............................. (191)

which is the equation of the common parabola.

d. Suppose, in the preceding cases, that an additional load,
P, <8 applied at the free end.

Some of the equations which result from this condition can-

not be integrated in finite terms, and hence the curves cannot
be classified.

161. BEAMS SUPPORTED AT THEIR ENDS,

A. Let the beam be supported at its ends and loaded at the
middle point.

For this case, Equation (182) becomes, for rectangular sec-
tions,

3P =3Rulf .o ii i (192)
a. If the breadth is constant, we have
1P = } Rby,

~ which is the equation of the common parabola.

Ar iB C 90
Fia. 94. Fi1a. 95.

The beam consists of two parabolas, having their vertices,
one at each support, a8 in Fig. 94.
b. If the depth is constant, we have

a wedge, as in Fig. 95.

Wt SN
NS

F1a. 96. Fie. 97.

B. If the beam 18 wuniformly loaded, we have from Equations
(74) and (182),
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{w (ke — o) = $ Ruy?—if rectangular, and if the breadth is
constant, 3w (e — &) =} BbyP. ... .cooiiiiiinntl (194)
an ellipse, Fig. 96.

If the depth is consta.nt {w (ke — o) = } Rd*u, a parabola,
Fig. 97.

C. Let the beam have an uniform load and also an uni-
Jormly increasing load from one end to the other, as in Fig.
98.

f

Fre. 98. Fia. 99.

Let W = the weight of the uniform load,
W, = the weight of the uniformly increasing load, and
V = the reaction of the support at the end whu,h has the
least load.
Then V=4%W 4 § W,
Let  be reckoned from A, then the load on « is
wo. W
7° + Ta:’,
and the moment of this reaction and load on a section which is
at a distance « from 4 is

Ww’ Ww‘
GWH+EW)e— ——~ — —5ceen
kL
which equals § 72 by for rectangula.r beams of uniform breadth.
To find the point of greatest strain, make the first differential
coefficient of (195), equal to zero. We thus find

reeens (195)

FW4 W, — Kz—gw 0.
If W = 0, this gives
@ =3 3.

When W= 0, this becomes the casé of a fluid pressing against
a vertical surface.
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162. BEAMS FIXED AT THEIR ENDS.—If the beam is
fixed at its ends and loaded at the middle with a weight, P, we
have, from Equations (117) and (182), when the breadth is

" uniform,
3Pl —4a)=3Rby . o ee et (196)

which is the equation of a parabola. The beam really consists
of four double parabolas with their vertices tangent to each
other, as in Fig. 99. The vertices are 3/ from the end.

If the load were uniform we would obtain, in a similar way,
a beam composed of four wedges. These are direct dednctions
from the common theory.

This shows in a very marked degree the absurdity of not
providing for the transverse shearing strain. All of the pre-
ceding cases show the same absurdity. The section being
reduced to naught leaves no ability to resist the shearing strain.
In a case like Fig. 99, it even prevents the equation of moments
from being practically realized ; for the resisting forces cannot
be transmitted past the points 4 and B.

163. EFFECT OF TRANSVERSE SHEARING STRESS 07
modifying the forms of the beams of uniform resistance.

Take, for example, the case of a beam supported at its ends
and uniformly loaded. The transverse shearing strain is

Ss = $wl — wz = w(l — 22),
which is the equation of a straight line, Fig. 100.

==

Fi1a. 100. er 101.

The double ordinate at the end is ‘
$wl + (b x modulus of shearing, S))

in which 3 is the breadth of the beam.

If the resistance to transverse shearing varies directly as the
transverse section, then will the triangle A B represent the
vertical section of one-half of a beam of uniform strength when
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shearing alone is considered. This result is as absurd as the
preceding.

Practically, the two cases may be combined by adding the
ordinates of the line 4 (' to those of the ellipse, the result being
shown in Fig. 101.

Theoretically, I do not see how they can be combined, since
the conditions upon which the equations are established are not
only independent, but are not simultaneous.* Each condition
furnishes a determinate equation.. One is an equation of mo-
ments, and the other of forces. The practical solution ahove
suggested, doubtless gives an excess of strength at all points,
except at the ends and middle; for by increasing the depth we
increase the moments of resistance, and probably add more
than is necessary to resist the transverse shearing, since that is
greatest near the neutral axis where the strain from moments
is least.

164, UNSOLVED PROBLEMS. — Many practical problems in
regard to the resistance of materials cannot be solved according
to any known laws of resistance. Some of these have been
solved experimentally, and empirical formulas have been de-
duced from the results of the experiments, which are sufficiently
exact for practical purposes, within the range of the experi-
ments. The resistance of tubes to collapsing, the strength of
columns, and the proper thickness of the vertical web of rails,
are such problems which have been solved experimentally.
The following problems are of this class, and have not been
solved. The first four are taken from the Mathematical
Monthly, Vol. 1., page 148.

1. Required a formula for the strength of a circular flat iron
plate of uniform thickness, supported throughout its circumfer-
ence and loaded uniformly.

* To illustrate, suppose it is required to find the radius of a sphere whose
volume equals (numerically) the area of the surface; and whose diameter
equals (numerically) the area of the hemisphere.. The former gives r = 3,

1
and the latter, » = —

el
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2. Required the strength of the same plate if the edges are
bolted down.

8. Required the equation of the curve for each of the pre-
ceding cases, that they may have the greatest strength with a
given amount of material.

4. In the preceding problems, snppose that the plate is
square.

5. Required the form of a beam of uniform strength which
is supported at its ends, the weight of the beam being the only
load. Suppose, also, that it is loaded at the middle.

The latter part of this problem has received an approximate
solution under certain conditions, as will be seen from the fol-
lowing experiments.

163. BEST FORM OF CAST-IRON BEAM AS FOUND EX-
PERIMENTALLY.—Cast-iron beans were first successfully used
for building purposes by Messrs. Boulton & Watt. The form

of the cross-section of the beams which
A % they used is shown in Fig. 102. More
recent experiments show that this is a
good form, but not the best.
% About 1822 Mr. Tredgold made an
z experiment upon a cast-iron beam of the

Ja form shown in Fig. 103, to determine its
deflection. He recommended this form
for beams. _

Mr. Fairbairn has justly the credit of
i E:—jl' making the first series of experiments for

determining the best form of the beam.
Fic. 108. Thege experiments were prosecuted by
himself for a few years, beginning about 1822, and continued
still later by Mr. Hodgkinson. .
The experiments quickly indicated that the lower flange
should be considerably the largest.

Fia. 102,
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The following experiments were made by Mr. Hodgkinson
(Fairbairn on Cast and Wrought-Iron, p. 11).

Fig. 104 shows the elevation and cross-section of a beam
whose dimensions are as follows : —

Fia. 104.

Area of top rib = 1.75 x 0.42 = 0.735 inches.
Area of bottom rib = 1.77 x 0.39 = 0.690 «

Thickness of vertical rib.......... 029 «

Depth of the beam............... 5125 «

Distance between the supports.. . ... 54.00 «

Area of the whole section.......... 2.82 square mches
Weight of the beam.............. 36% pounds.
Breaking weight................. 6,678 pounds.

The form of the fracture is shown at & » ». It broke by
tension. _

Expermvent IV.

Dimensions. Inches. 4
Thickness at 4 = 0.32 B
43 “« _B —_— 0-44 C D
« “« 0= 0.47 F
« “« FE = 2.27
“« “« DE= 0.52 [
Depth of the beam = 5.125 Fre. 105.

Avrea of the section = 8.2 square inches.

Distance between the supports = 54 inches.
Weight of casting = 40§ pounds.
Deflection with 5,758 pounds = 0.25 inches.

[ &« 7 138 « — O 37 {3
Breaking weight 8,270 pounds.
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ExpErmMENT 19.

s JCU

Fia. 108,

Dimensions in inches :—

Area of top rib = 2.83 x 0.31 = 0.72.
Area of bottom rib = 6.67 x 0.66 = 4.4.
Ratio of the area of the ribs = 6 to 1.
Thickness of vertical part = 0.266.

Area of section, 6.4.

Depth of beam, 5%.

Distance between the supports, 54 inches.
‘Weight of beam, 71 pounds.

This beam broke by compression at the middle of the length
with 26,084 pounds.

It is probable that the neutral axis was very near the vertex
n, or about £ the depth.

ExeermvENnT 21.

|

H
H

[ Bottom Flanch i
: Top Flanch

Fia. 107.

This was an elliptical beam, Fig. 107.
Dimensions in inches : —

Area of top rib = 1.54 x 0.32 = 0.493
Area of bottom rib = 6.50 x 0.51 = 8.315.
Ratio of ribs, 6% to 1.

Thickness of vertical part = 0.34.

Depth of beam, 5%.

Area of the section, 5.41.
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Distance between supports, 54 inches.

Weight of beam, 70§ pounds. :

Broke at the middle by tension with 21.009 pounds.
Form of fracture & n ; & n = 1.8 inches.

As these beams have all the same depth and rested on the
same supports, 4 feet 6 inches apart, their relative strengths
will be approzimately as the breaking weight divided by the
area of the cross section.

In Experiment 1, 6,678 + 2.82 = 2,368 Ibs. per square inch.

« « 14, 827032 —2584 «
“ “« 19,926,084 + 6.4 =4,075 « «
“ « 91 91,000+ 541=3883 « «

It is evident from these experiments, that when the vertical
rib is thin, the area of the lower rib should be about 6 times
that of the upper. In the 19th experiment it has already been
observed that the beam broke at the top, and in the 21st it
broke at the bottom, although the lower flange was larger in
proportion to the upper than in the preceding case, and the
comparison shows that they were about equally well propor-
tioned. They should be so proportioned that they are equally
liable to break at the top and bottom.

A beam proportioned so as to be similar to either of the two
last forms above mentioned may be called a “TyPE Form.”

166. HODGKINSON'S FORMULAS for the strength of cast-
tron beams of the TYPE FORM.
Let W == the breaking weigbt in tons (gross).
a = the area of bottom rib at the middle of the beam.
d = the depth of the beam at the middle.
and 7 = the distance between the supports.
Then according to Mr. Hodgkinson’s experiments we have

W =26 i"éwhen the beam is cast with the bottom
rib up, and

W=24 a—‘li-when the beam is cast on its side.
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167. EXPERIMENTS ON T nAn.s.—-Experimenm on T
bars, supported at their ends and loaded at the middle, gave
the following results :—*

Hot blast bar, rib upward, L broke with....... 1,120 pounds.
“ « « downward, T broke with.... 364 «
Cold blast bar, rib upward, L, broke with...... 2,359 «

“ « & downward, T broke with.... 980 «

The ratio of the strengths is nearly as 3 to 1, but according
to the table in Article 47, we might reasonably expect a higher
ratio. If a greater number of experiments would not have
given a higher ratio, we would account for the discrepancy by
supposing that the neutral axis moved before rupture took
Place, or that the ratio of the crushing strength to the tenacity is
less for comparatively thin castings than for thick ones. Tt is
known that the crushing strength of thin castings is proportion-
ately stronger than thick ones. Hodgkinson found that for
castings 2, 24, and 3 inches thick, the crushing strengths were
as 1 to 0.780 to 0.756 ; and Colonel James found a greater in-
crease—being as 1 to 0.794 to 0.624. -See also Article 41.

168. WROUGHT-IRON BEAMS.—The treacherous character
of cast-iron beams has led to the introduction of solid wrought-
iron ones. Special machinery and special processes of manu-
facture have been brought into use, by means of which they
are quickly and cheaply made. They are usually of the double
T (X) section.

169. A NOVEL AND PECULIARLY CONSTRUCTED FLOOR
is here given as an illustration of the use of a plate (see Arti-
cle 164, No. 4).+ It was executed in Amsterdam, for a floor
60 feet square. The flooring consists of three thicknesses of
13-inch boards. The first thickness is laid diagonally across
the opening. The ends resting on the rebates of the wall-plates,

* Mahan's Civ. Eng., Wood’s Ed., pp. 185 and 136 ; Barlow on the Strength
of Materials, p. 183.
t Tredgold's Principles of Carpentry, 1870, p. 91.
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and rising about 24 inches higher in the middle of the room
than at the sides. The second thickness is also laid diagonally,
but square across the first, and the two well nailed together.
The third thickness is laid parallel to the sides of the room,
and the whole well nailed together. All the boards are grooved
and tongued together, forming a floor 4% inches thick. The
strength of plates vary as the square of their thickness, and
are equally strong to support a weight in the middle, whatever
the extent of the bearing may be; but when the load is uni-
formly distributed, the strength varies inversely as the area of
the space it covers.*

* Emerson’s Mechanios, seo. viii., prop. 78, cor. 5.
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other end, and acting in the direction of a tangent to the arc of
the path described by the free end.

As a unit of fibres cannot be placed so that all of them will
be at a unit’s distance from the axis, we must suppose that the
resistance of a very thin annulus, which is at a unit’s distance,
is proportional to that of a unit of section. The area of an

element is
pdpds.

The resistance of an element which is at a unit’s distance
from the axis is G multiplied by its area; which expressed
analytically is

Gpdpdd,
and according to the first law

Gp*dpdp = the resistance of any fibre
whose length is unity, to being twisted through an angle unity;
and the moment of resistance = Gp*dpd¢p for an angle unity;
and for any angle 8 the moment is, according to the second law,

, Gop*dpdd
and the total moment equals the moment of the applied forcg,
or moments of the applied forces ; hence

Pa=G8 [/}%@ = G'Zf I,

where 7, is the polar moment of inertia of the section.

‘ r 2w
For circular sections J, = f / p*dpdp = mr (199)
0 0

. n_2Pa _2Pal
..G-W—W ........................ (200)
or, = 2Pa

Gmrt




TORSION. 207

172. THE VALUE OF THE COEFFICIENT G may be found
from Equation (200). M. Cauchy found analytically on the
condition that the elasticity of the material was the same in all
directions, that @ = £* M. Dulean found experimentally
that @ is less than § %, and nearly equal § %]+ and M. Wert-
heim found ¢ = § E nearly.t M. Duleau’s experiments gave

the following mean values for ¢: 1
Value of &
Pounds

Softn'on..........................8533680
Ironbars....ccveivinniennnannnn. 9480917
Englishsteel ...................... 8,533,680
Forged steel (very fine).............14,222,800
Cast iron.......... ceeeene eeeeee.. 2,845,600
Copper.....coviviiiiiiiiiiienaa. 6,209,670
Bronze.........coooiiiiiiio. . 1,516,150
. 08K, . .ot enieiieeeeee.. 568,912
Pine....oerrunnn.. e .. 615,472

FEzample.—If an iron shaft whose length is 5 feet, and diameter 2 inches,
is twisted through an angle of 7 degrees by a force P = 5,000 1bs., acting on a
lever, @ = 6 inches, required @. The 7 degrees is first reduced to arc by mul-

T
1807 wd Eq (m) gives’

2 x 5000 x 6 x 60 x 180
G= G XT = 9,697,000 1bs.

tiplying it by 1%6' which gives a =

173. TORSION PENDULUM._Jf a prism is suspended from its
upper end, and supports an arm at its lower end, and two weights each equal
3 W are fixed on the arm at equal distances from the prism, and the prism be
twisted and then left free to move, the torsional force will cause an angular
movement of the arm until the fibres are brought to their normal position,
after which they will be carried forward into a new position by the inertia of
the moving mass in the weights § W until the torsional resistance of the prism
arrests their movements, after which they will reverse their movement, and
an oscillation will result.

Equation (200) readily gives:

wQrt

P="yr @)

* See Chapter IX.
t Résistanee des Matériauz, Morin, p. 461,
t L’Engineer, 1858, p. 52.
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from which it appears that the torsional force P varies as the space (aa) over
which it moves.

Tt is a principle of mechanics that the moving force varies directly as the
product of the moving mass multiplied by the acceleration. Hence, if z = (aq),
the variable space, ¢ — the variable time, M — the mass moved. and observing
that ¢ and 2 are inverse functions of each other, and the above principle of
mechanics gives the following equation (neglecting the mass of the prism):—

datz ©GQrt

Mom=—P=—ggi®

- Multiplying both members by the dz, gives

W dzd’e nGrt

T i
where Wis the weight of the mass moved, and g is the acceleration due to
gravity. The oscillations commence at the extremity of an arc whose length
is 8, at which point the velocity is zero. The integral of the last equation

between the limits 8 and z is
d:c’ _ G
=3 ng:;’ (o* — ).

A second integral gives

= _2—W‘i’i ] " Wia®
- wQgrt i’y “2Ggrt
which is the time of half an oscillation. For a whole oscillation :

a
N=T= = Gg IW

This is essentially the theory of Coulomb'’s torsion pendulum. A torsion
pendulum was used by Cavendish in 1778 to determine the density of the
earth, (See Royal Philosophical Transactions: London, Vol. 18, p. 388.) He
found the mean density of the earth by this method to be 5.48 times that of
water, or according to Hutton's revision, 5.42,

Reich, by aid of a mirror apparatus, afterwards found it to be 5.43. Bailey
found by experiments on a larger scale 5.675. Reich repeated his experiments
and found 5.583. Other methods gave a value somewhat larger than these,
but the mean result shows that the mean density of the earth is about 5} times
that of water.—See Bailey’s Hzperiments, London, 1843.

174. RUPTURE BY TORSION.—The resistance which a bar
offers to a twisting force is a torsional shearing resistance, and
in regard to rupture, the equation of equilibrium is founded
upon the following principles :—

1st. The strain upon any fibre varies directly as its distance
from the axis of torsion; and
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2d. The sum of the moments of resistance of the fibres equals
the sum of the moments of the twisting forces.

Let JJ = the MoDULUS OF TORSION, that is, the ultimate resist-
ance to torsion of a unit of the transverse section which is most
remote from the axis of torsion. It is the ultimate shearing
resistance to torsion, but may be used for any shearing strain
which is less than the ultimate,

d; = the distance 6f the most remote fibre from the axis of
torsion,

J (o, ) = the equation of the section,

P = the twisting force, and

@ = the lever arm of P.

Ip = the polar moment of inertia of a section.

Then pdpddp = dA = the area of an element of the section;

Jpdpdp = the shearing strain of the most remote
element ; and, by the first principle given
above, ‘

'I_pdpd(p = the shearing strain of any element, which

a is at a unit’s distance from the axis of
torsion, and from the same principles we
have

_p2dpd¢ = the shearing strain of any element, and
this, multiplied by the distance of the
element, p, from the axis, gives

:%p’dpdd) = the moment of resistance to torsion.

Hence, according to the second princip}e we have

J
J 3
Pa = f [edpip =2 [pad.= oo 20
For circular sections, we have already found, Eq. (199),
Iz) = ‘;‘WT".

For square sections, whose sides are 4, we may find *
Ip=3VY,andd =0y

* We have J p2dA =/(z’+y’)d.4 = J2%dA+ [ y*dA, that is, the polar mo-
ment equals the sum of the rectangular moments, the origin being the same
14
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173. pracTICAL FORMULAS.—Equations (199) and (201)

give for cylindrical pieces, observing that &, = r,
2 Pa
Po=3nlr . .J= e R RRTERTEY (202)

If cylindrical pieces are twisted off by forces which form a
couple, and P, a, and r measured, the value of J may be found
from Equation (202). Cauchy found J = ¢ R,* which is con-
sidered sufficiently exact when a proper coefficient of safety is
used. Calling J = 25,000 pounds for iron, and using about a
five-fold security ; and J/ = 8,000 pounds for wood, and using
about a ten-fold security, and we may use for

Rouxp 1RON sHAFTS (Wrought _
or cast), diameter = g v Pa
" SQUARE IRON sHAFTs (wrought ....(203)
or cast), side of the square = ¢ ¥/ Pa
SQUARE WOODEN SHAFTS,
side of the square =% ¢Pa

The dimensions given by these formulas are unnecessarily
large for a steady strain, but shafts are frequently subjected to
sudden strains, amounting sometimes to a shock, and in these
cases the results are none too large.

Practical formulas may also be established on the condition
that the Zotal angle of torsion shall not exceed a certain amount.
Making G = ¢ £, and solving (200) in reference to 7, and we
have for cylindrical shafts,

_ /18 Ll
- 3w Eu ’
.and similarly for square shafts,

)¢/

o

iin both cases. In this case the origin being at the centre of the square, we

* ihave /;nmzfy?cm ~Ip =z:/},nm = 2% 4! (see Eq. (51)).
* Résumé des Legons, Navier. Paris, 1856, pp. 193-203, and p. 507.
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In these expressions P should not be so great as to impair
the elasticity,—say for a steady strain 2 should not exceed the
values given by Equation (203).

If o° is given in degrees, it is reduced to arc by multiplying
. T T . .
it by 180 % that « = 180% 5 hence the preceding equations be-

come: for cylindrical iron shafts,

r=824¢/ L9 L eeeenn..(204)

| Ea

and for equare iron shafts,
d=s551¢/ Pl . .(205).
\/an (205)

Ezamples.—1. A round iron shaft 15 feet long, is acted upon by a weight
P = 2,000 lbs. applied at the circumference of a wheel which is on the shaft,
the diameter of the wheel being 2 feet; what must be the diameter of the
shaft so that the total angle of torsion shall be 2 degrees?

If the shaft is cast-iron & = 16,000,000, and

4 /2000 x 12 x 15 x 12

2r = d = 6.28; 216,000,000

= 8.69 inches.

2. A round wooden shaft, whose length is 8 feet, is attached to a wheel
whose diameter is 8 feet. A force of 200 lbs. is applied at the circumference
of the wheel, what must be the diameter of the shaft so that the total angle
of torsion shall not exceed 2 degrees ?

4/ 200x4x12x8x12

'2r=d=6.28 W

= 4.35 inches.

175a. RESULTS OF WERTHEIN'S EXPERIMENTS.—A few
years since M. G. Wertheim presented to the French Académsie
des Sciences an exhaustive paper upon the subject of torsion,
the substance of which was published in the Annales de Chimie
et de Physigue, Vol. XXIII., 1st Series, and Vols. XL. and L.,
3d Series. These articles would make a volume by themselves,
and hence we will content ourselves at this time with present-
ing his
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CONCLUBIONS,

When a body of three dimensions is subject to torsion the
following facts are observed :—

1st. The torsion angle will consist of two parts, one tempo-
rary, the other permanent; the latter angments continually,
though not regularly.

2d. The temporary displacements augment more and more
rapidly than the moments of the applied couples, and the in-
crease of the mean angle, which in hard bodies continues until
rupture, in soft bodies continnes only to the point where the
. body commences to suffer rapid and continuous deformation.

3d. The temporary angles are not rigorously proportional to
the length, and, all else being equal, the disproportionality in-
creases in measure as the bar becomes shorter.

4th. In all homogeneous bodies, torsion caused a déminution
of the volume, which is proportional to the length and square
of the angle of torsion, and each point of the body, instead of
describing an arc of a circle, follows the arc of a spiral. The
condensation of the body increases from the centre to the cir-
cumnference.

5th. In bodies with three axes of elasticity, the change of
volume and resistance to torsion are functions of the free axes,
and the relation between them may be such that the volume
will augment.

6th. Circular or turning vibrations of great amplitude are
difficult to produce, and as small angles of torsion only are
used, the preceding conclusions apply to this case.

7th. Rupture produced by torsion usually takes place at the
middle of the length of the prism; it commences at the dan-
gerous points, and operates by slipping in hard bodies and by
elongating in soft ones.

8th. With regard to the influence of the figure and absolute
dimensions of the transverse sections of the bodies, we derive
the following conclusions :—

9th. In homogeneous circular cylinders the diminution of the
* volume is equal to the original volume multiplied by the prod-
uct of the square of the radius, and the angle of torsion for a
unit of length (the angle being always very small). Further,
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under torsion the radius of the cylinder equals the primitive
radius multiplied by the sine of the angle of inclination of the
helicoidal fibres. This last gives a means of calculating the
diminution of volume. But in reality the twisted cylinder
takes the form of two frustra of cones joined at the smaller
bases; and although this does not sensibly affect the theoretical
results for long cylinders, yet it deprives our formulas of all
their value in ordinary practical cases.
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CHAPTER IX.
DISTORTIONS.

176. ANY CHANGE OF FORM OF A SOLID DUE TO
FOREIGN FORCES IS A DISTORTION.—Several of these have
been considered, separately and singly, in the preceding chapters,
such as extension, compression, bending, torsion, and transverse
shearing, but we shall find that in all cases one of these distor-
tions is accompanied by some other one. In all elastic bodies
the particles move more or less freely under the action of the
straining forces.

The phenomenon of elasticity is nothing more than the
action of the attractive and repulsive forces of the molecules
of a body upon each other. 'When a force is applied to a body,
its effect is transmitted from particle to particle by the internal
forces, until it meets and is held in equilibrium by a force
applied at some other part.

The Mathematical Theory of Elasticity is considered in three
parts, the relation of stresses, the relation of strains, and the
relations of stresses to strains.* We shall here consider only
such principles as pertain immediately to the problems under
consideration.

177. MEASURE oF sLIPPING.—If the section bd be forced
into the position ¢ f by the slipping (transverse shearing) of bd
upon ac, the amount of the movement per unit of length will
be measured by the angle dag, which for small displacements
will be measured by the tangent of the angle.

Let ¢ be the tangent of dag = Z_g = bg when ab is unity.

* M. Lamé’s Legons sur la Théorie Mathématique de ¥ Elasticité des Corps
Solides. Paris, 1852. Résistance des Corps Solides, par Navier. Troisidme édi-
tion, 1864, .
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The resistance to this shearing will evidently vary as g, and
also a8 the elastic resistance of the material, and if the resist-
ance be evenly distributed over the transverse section it will
also vary as this section.

Fia. 109.

Let P = the tangential force, that is, the force which acts in
the plane 4d,
E, = the coeflicient of transverse elasticity,
A =.the area of the transverse section ; then

P=FE,Ag....ceueeiiiiinanannn. (206)

If A =1, we have p = E,g, which is the ¢ntensity of the
stress.

When flexure is involved, we shall find that the shearing
stress is not evenly distributed over the section. It is evenly
distributed when bd is consecutive to ac, or when the area is
small it may be considered uniform.

Letting fall the perpendicular ¢A from ¢ upon agq, and we
have

ah _bg .

h = ap= 9
hence, the transverse slipping in an amorphous body is accom-
panied by an equal longitudinal one, for we consider that the
effect is the same as if @b had slipped over ¢d, an amount equal
to akh. .

Produce the diagonal ad and describe an arc fe which shall
pass through f; having the centre at a, then will de be the elon-
gation (or dilation) of the diagonal ad; and in a similar way we
may find the contraction of the diagonal cb. '
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If 2 = the dilation per unit of length, we have

i=%
T ad
By similarity of the triangles def and acd we have
cd df cd
% «@¥%  wdud  _a

Wl Vit ), @ i
14+—= 14
Vit Y
which is & maximum when ¢d = ac, for which case we have

or the maximum dilation is one-half the slipping. Similarly,
the maximum contraction of cd takes place when it is the diag-
onal of a square.

‘We see that if we have two equal stresses in opposite senses,
one a pull along ad, and the other a push along b, whose di-
rections make a right angle between them, the resulting distor-
tion is equivalent to ome-half of a simple shear of the same
intensity on a plane at 45 degrees with either of the others.

Limat of the Slipping.
If R’ = the elastic limit of the strain;
E = the coeflicient of elasticity ; and
2’ = the elongaiion produced by R’, we have

2R
_%g g_—E—.

V=

t::!to

.

178S. RELATION BETWEEN LONGITUDINAL AND, LAT-
ERAL STRESSES.—When a body is subjected to a pull there is
alateral contraction, as shown in Fig. 116. The relation between
these stresses, for bodies which are not homogeneous, is com-
plex, but it is one of the questions which is considered in the
Mathematical Theory of Elasticity. But for a solid whose
elasticity is the same in all directions-—called an isotropic body
—the relations are comparatively simple. First consider the
case in which the straining force acts in any direction.
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Let p = a stress acting in any direction due to any cause,
Px" = the component of this pressure upon a unit of sec-
tion resolved normally to a plane which is perpen-
dicular to z;
Pyy = the normal component on a
unit of section which is nor-
mal to y;

P = similar component in regard
to z;

A = the coeflicient of direct or lon-
gitudinal elasticity, which
expresses the relation be- F1e. 110.
tween the longitudinal strains and the normal
stresses;

B = the coeflicient of lateral elasticity, which expresses
the relation between the longitudinal strain (a
push or pull) and the stresses at right angles to
the strains. It expresses the resistance to lateral
contraction,

8; 8,, 8, = the elongations in the directions of the axes @, y

‘ and z for a unit of length.

We then have, when the body is perfectly amorphous, or
isotropic,t

* This notation was first used by Cauchy and Corioles in discussions upon
the Theory of Elasticity. The first sub-letter indicates the normal to the
plane, and the second one the direction of action in that plane. Thus pxy
indicates a pressure upon a unit of area which is perpendicular to 2, and in a
direction parallel to .

t Let 4a be an elementary section,
7 = Mm = the distance of any molecule, m to the right of M
R = the force exerted by one molecule upon another at the distance and
in the direction of 7,
7 the number of moleou.les contained in a unit of the body in the vmlmty
of M,

Take the origin of codrdinates at M, z being taken perpendlcnlar to the sec-
tion .a, z vertical, and y perpendicular to z 2.

The total action of all the molecules which are distant Mm = 7 of the mole-
cules on the right of M upon those at the left, is the same as if the whole mass
of the cylinder at the left, whose length is 7, were concentrated in the section
at M acting upon the lamina at m ; whichis the same asif it were concentrated
in the point M, and the lamina in the molecule . We have
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Pu= 43, + B@, + )
Py =A8, + B, +8,)...... ... (208)
Pu = A8, + B(S, + 8,)
Suppose that the strain is parallel to #, then p,,=0and p,=0.

4a . z = the volume of the cylinder,
7 4a . # = the number of molecules,
Rn 4a . z = the sum of all the actions parallel to 7, between Mm,

Rn da .z; = the resultant normal to the section.

If we consider 7 as variable, and for each new value of r we substitute a
proper corresponding value of R (which might be called R,, R,, R;, etc.), we
ghall have a series of corresponding expressions all of which will have the
same form as that given above, hence we have for all the forces which cross

the section Ja
— z2
Ada SR -
r

2
in which S applies to all values of nR; from zero to 7, when the expression

does not reduce to an insensible quantity on acoount of the rapid decrease of
its value as 7 increases. The relation between R and 7 is not known, but we
may assume that the resistance offered by the elastic forces above those which
in the natural state are in equilibrium, when disturbed by an extraneous force,
is proportional to the small increase of distance, dr, as we found in Chapter I.
Let R, be the derivative of R in respect to r, then will the stress on a unit be

SR,drz, and
z!
Pxx = SR, dr ;
will be the resolved component of the stress.
Let 3;, 3, and 3; be as given in the text, then
[ ;z = the projection on 7 of the z component; of the elongation, and
similarly for y and 2;
hence, neglecting all differences above the first, we have
2 yc T gt
dr_s,,,—. + 3y; +3¢;
hence
3
P = 38R, ,+ 3,312. +s.aR.3’

Similarly
94y = 38R, ,+8.SBI +azszzl’”
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Also the lateral compressions will be the same in the directions
of y and 2, and hence §, =8, For this particular case let
8, = %, 8, = §, = 1,, and we have
P = Aty + 2Bis..........(208a)
0= A% + Biy + Biy.......(209)
By elimination we find
. A+ B
“EFy A8 —pt=
Khal vy 2
Hence 17, is negative compared with ¢,, as it should be, since
a longitudinal pull produces a lateral compression.
The value of ¢, when p,, is unity is called the coefficient of
direct pliability, and ¢, the coefficient of lateral pliability.
Returning to the equations, and we find

+ 4
A:—.-le—» 2
0P+ vy — 20% Prxs
Be_ —%
P2+ 10, — 205 Pxxs

Or, since 7, is negative, we have for the numerical values of
A and B when p,, is unity, aud ¢, and ¢, are both used as posi-
tive numbers ;

9. = 8 SR, ,+3xSR, p +8,,SR1

But on account of the isotropic character of the solid, the expressions
which are similar will have the same value, hence

4 4 4
8B, %, =SB, Y, = SR, %, = 4 (o),

re 17 —

252 2.2 2t
8B, S = s8R, - =8B, T =B

which reduces the preeeding equations to those in the text.
It is more common in the investigations in molecular mechanics to prove
at once a relation between 4 and B. The preceding is a spesial solution.
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— ]
B= ?y — Gty — 2%

To find the relation between 4 and B requires a series of
experiments, or a further consideration of molecular actions.
Since the solid is isotropic, we shall here assume that the re-
gistance to a shearing stress is the same in all directions, and
since the lateral movement only takes place by shearing, we
will here assume that the coeflicient of lateral elasticity is the
same a8 that for transverse shearing, or torsional shearing, or
longitudinal shearing.

Generally let ¢ = the coefficient of transverse elasticity;
the particular values of which will be for an isotrope,

C=B=E = — (see Eq.206) = & (see Torsion).

‘We have (as shown below),
A—B= ; 1 : =28
UY— 1
1
= b Px Dumerically ;
C=34—B)..cccovvvveua.. (210)

To prove thig, take the case of two equal stresses acting at
right angles with each other, in which one is a pull, and the
other a push; the former being parallel to =, and the latter
parallel to yv. Since the body is isotropic, the contraction in
the direction of z produced' by p. will equal the expansion
caused by p,y, and hence §,, Eq. (208) will be zero, and p,, = 0;
hence the third of Eq. (208) gives 8, = — §,, and Egs. (208)

become
= (4 — B,
w=(—4+ B)d;= —pg

The intensity of the transverse shearing is, Eq. (206), p =
E,g = Cg which for this case is, Eq. (207)

P =px(or —py) = 0.20 =208,
hence A — B =2C.
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Assuming, as above stated, that the lateral elasticity for an
isotrope is the same as the transverse, and we have

A—-B=20=2B

- A=38B .
which in the second of Egs. (209) gives
=—1u;

that is, the lateral contraction of an isotropic solid under the
action of a direct stress is 1+ as much per unit as the longitu-
dinal extension for the same unit.

If b= the breadth,
d = the depth,
* I = the length of a prism,
V = the volume before elongation,
V= “ after “ . ,and
P = the pulling force.
Then the elongation is

r= (B ) '

. 7\
and 7, =—

[
We also have
V =bdl
"=t - d(1l—1%) I+
=bdl (1 + %, — 4y — 43) nearly.

If 4, =4 exceeds 4¢, the expression becomes negative, or
there would be a diminution of the volume, which is absurd;
hence this may be considered a superior limit of the values of
% and 7. If ¢, = 45 = 1%, we have

Vi=0bdl(1+35)=6d @+ #\) -

This solution shows, that on the convex side of a bent beam
there will be a lateral contraction, and on the concave side
there will be a lateral expansion. The elongation per unit of

length for a rectangular sectlon whose breadth is &, and depth
d, is, Eq. (45),

V=g
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and the lateral contraction per unit will be

and the expansion on the opposite side will be the same amount.
The total contraction will be

bd

8p
By this means we find that the lateral sides prolonged after
flexure will meet at a point

4p
from the neutral axis opposite to the convex side. The sections
which were rectangular before flexure become trapezoids after

flexure.
Substitute the values of A and 4; in Eq. (208a), and we find

5 . 5.
But l);‘i = E, "the coefficient of longitudinal elasticity,
1
2 Al
=K. . reeeseaas 2
G 5 (211)

or the coefficient of elasticity for slipping (whether transverse,
lateral, longitudinal, or torsional), in an isotropic solid is $ of
the coeflicient of longitudinal elasticity.

But G =B=%4;
.‘.E:%A,

that is, the coefficient of ‘longitudinal elasticity is § of that for
the direct normal stress.

It will be seen from the equations, that the quantity % is a
result of all the distortions, being the elongation which results
from the yielding both longitudinally and laterally.

Returning again to Egs. (208) and we have

(P + Py +Pa) =3 (A +2B) (3. + §, + 8,)
The coefficient § (A4 + 2.B) expresses the relation between the
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mean direct stress and the cubic strains, and is called the cubic
elasticity, or elasticity of volume.

The coefficient of transverse pliability is - = ¢ = 2 (i, + %)

c
(numerically).
The coefticient of cubic compressibility is
3 . . .
D =q73B= 3 (¢, — 24;) (numerically).

The following are the coefficients for Crystal, as deduced
from the experiments of M. Wertheim.—(Annales de Chemie,
3d Series, vol. xxiii.)

A 8592600
B 4204400
C 2159100
11_7 5,643,800
1 5,747,000
Y

2, 0.0000001740
7 0.0000000575
¢ 0.0000004631
D 0.0000001772

179. SHEARING STRAINS IN A BEAM WHICH IS BENT
BY TRANSVERSE STRESSES.

In the discussions of the problems of flexure, the longitudi-
nal elements were treated as if they produced no action upon
each other, and were simply subjected to the laws of extension
and compression.

If we conceive that the beam is composed of thin horizontal
lamine, and each had an uniform strain from one end to the
other, there would be no slipping between the adjacent ele-
ments. This case is realized when the neutral axis is the are
of a circle, as when a beam is supported at its ends and is
loaded with equal weights placed at equal distances from the
supports. But in all other cases there is necessarily a slipping.
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In Fig. 111, the element DC is not sub]ected to any tensile
strain at C, but from that point the strain increases to D, where
it will be a maximum. The strain can be unequal only by

P

Fia. 111,

some adjacent element or elements taking off (so to speak) some
of the pulling force, and the element must slide upon the
adjacent one.

The moment of P in reference to ¢ is Px, and in reference
to /it is P(z + dz), and the difference between these, or Pdz,
is the moment of the shearing force at #'in reference to ¢, and
hence the shearing force is P, as given in Article 93. It re-
mains to determine the law of distribution of this stress.

The strain on a unit of section ¢n is, according to Eq. (46),

P""E—y
p

in which substitute the value of % from Eq. (49), and we have

p= _?} SPE. it (212)
and for a width mm’ (Fig. 112) = U the strain is
pU= _g_ Us Ps

and for a depth gn = dy it is

. pUdy=222y .
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The strain at pm is found in the same way, and the difference
between the two is the excess of strain at m over that at «.

Fre. 112.

It is evidently the differential of the preceding expression in
which p and 2Pz are the only variables (the beam being pris-

matic). -
~dpUdy = dZ']Pa: Uydy = Z'Pldx Uydy
(See Article 93 in regard to the last reduction.)
This is the value of the longitudinal shearing along mn = di
due to the element mg. DBut the shearing due to all the ele-
ments between ¢ and » will be

d. -
3 Pdx (}'3/ 2y,
L Jy
(d, being the distance of the extreme fibre from the axis). This
is the expression for the force which tends to move the volume
acnm along the line mn. This divided by the area mn m'n =
Udz gives the shearing strain on a unit of section, or its inten-
sity, which is (say (¢, as stated on the next page.)

_sp (% o
Gy - 7T Uydg/ ........... (213)
which at the centre becomes
d,
G = EIIZ Ufl/dz/ ........... (214)

in which 5 is the breadth on the neutral axis..
15
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But it was shown in Article 177 that a longitudinal shearing
is accompanied by an equal transverse shearing. Hence, Eq.
(213) gives the sntensity of the transverse shearing at a point
whose ordinate is ¥.

If 5P becomes zero, as it does in the case of a Couple, Eq.
(213) reduces to zero, or there is no transverse shearing.

d
The part / lUydg/ is the statical moment of aa’mm’ in

reference to the neutral axis.

We see from this that the transverse and longitudinal shear
ing is zero at the upper and lower sides, and increases towards
the neutral axis, at which place it is a maximmum. We may
conceive of this condition by supposing that the beam is built
up of successive layers, each succeeding one being free, but
adding to the shearing of all the preceding ones between it and
the neutral axis. Equation (213) is not exact except for rectan-
gular cross sections, for when the cross section is elliptical or
otherwise curved, the free surface is at variable distances from
the neutral axis.

If mk is normal to mp, and
mr is parallel to of, then
g = tangent of the angle Zmr, the amount of slipping,
@ = coeflicient of shearmg elasticity, = Z, for isotropes, and
~ ‘Gg = the resistance to shearing per unit, as used above.

The mean intensity is

=P
A
Hence, the ratio of the maximum shearing is to the mean as
. Gg od 4 f Tydy

‘which depends.entn-ely upon the form of section.
If the cross-sections are rectangunlar, Equation (214) gives

id
0= a3 _J W=7 ... (215)
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which is the maximum ¢nfensity of the shearing, and is § of
the mean. The total shearing is

% Ggbd =3P

If the beam be fixed at one end and loaded at the free end,
3P = P, and hence the total force which at all points along
the neutral axis tends to push the upper half of the beam along
the lower half, and which should be resisted by the cohesion
of the elements, will be per unit of length

P
Ggob = % —(—i—-

For any portion aa’'mm’ of the rectangle we have

Gg:é—b—l;sfbydy_(szp[i@ yz] (216)

or G (g—9g)= b 7 e N (216a)

that is, in rectangular beams the difference between the shearing
at the neutral axis and any other point above or below <,
varies as the square of the ordinate.

The total transveree shearing in the cross section is

/ (ng)(ly— / %d[ 1@ — y’]dy,

which by reduction gives 3 P, and agrees with Article 93.

It now appears evident that when there is longitudinal
shearing, the transverse sections which were originally plane,
will not remain plane during flexure.

To rinp THE EqQuaTioN oF THE CUrvE aod for rectangular
beams,

Erect oe normally to of at o, and let
vy = the ordinate 0s, and
« = the abscissa ms,
m is parallel to o,
mk is normal to mp, and
g = tangent Zmr = the slipping.
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g_m = the inclination of mp to oe, = ¢ plus a small inclina-
tion which mn may have in regard to of, which is
produced by the lateral contraction due to the
longitudinal extension.

The elongation per unit of. length is

E4 . (45))
. (Eq. (45))

and the contraction for an isotropiec solid is ¥, and hence the
P

contraction hetween o and m is

The distance mo will be Jess than ¢z by an amount which
will not differ sensibly from the differential of the preceding
expression. Differentiating and dividing the result by dz
gives for the tangent of the inclination

P3P
8ET

Hence, for rectangular beams we have

do _ 63 P ¥
F=It sz = G [’?dz * 1z ?”]
Integrating, observing that # = 0 for ¥y = 0, and we find

_33P 2 G\ 8y°
= 10w E‘(I‘E’)@]
Each half of the curve aob is therefore a parabola of the

third degree, and of the same order as the curve A 5.
For the ordinate ae, at the upper surface, make y = 3d.

} 3P _ 2P
cae = m;b[w g] =} r nearly.......... (217)

‘We here have the peculiar result that the total effect of the
ongitudinal shearing at the surface is independent of the depth

and length.
If G =4 E, we have
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P
w—_-g%ﬁ 5d2y—6y"]....‘ ........... (217a)

If 5P =0, as in the case of a Couple, # will be zero for all
values of ¥, and hence the section will be plane.
The curve is normal to the neutral axis, or parallel to oe,

where g _ 0, or at the point whose ordinate is

dy
y = 0.52d,

or at a short distance above the upper surface. Were there no
lateral contraction it would cut the upper surface normally.

The algebraic curve, if continued, will cut the axis of y at
two points, one at y = 0, and the other at 4/§ d, or at 0.91 &
nearly.

Hzample.—If 3P = P =,2,000 lbs., G = 8,000,000 bs,, b =1inch, ¢ =12
inches, required the ordinate ae.

Ans. @6 = 77%5v inch, nearly.

It will be seen from the preceding equation, that all the
transverse sections in prismatic beams which were originally
parallel, will be of the same form when the beam is loaded at one
point only ; and that it will be modified at the different points
of the beam if the value of the shearing stress, 3P = §, varies.

180. INCREASED DEFLECTION DUE TO TRANSVERSE
SHEARING (OR SLIPPING).

The slope of any element due to the transverse sheaﬁng,
Eq. (213), is

P (4
tang kmr =g :6%—0. L Uydy,

which must be added to the slope due to bending by flexure.
The increased deflection for a length I will be

=1l
if g is constant, but if it is variable,

& ﬂdx ; or by substituting the preceding value of g, we
0

have
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3 Pdzx
&= /J Uyd/_ oIy ﬂydy (217)

If the beam is rectangular, the limits are 0 and 3 ;
5Pz
=¥ G

hence the deflection varies directly as the moment of the
bending forces and inversely as the area of the transverse
section.

If the beam is fixed at one end and loaded at the free end,

Pl
¥ =100
Hence the total deflection will be (Eq. (57) )

_8pip 4 1
“ W |3ER T e

If it be uniformly loaded
wl

=405

~ If it be supported at its ends and loaded at the middle,
3 Pz = }Pl, hence

&= Pl
- %m’
and hence the total deﬂection will be (Eq. (73))
Pr
A—4E'bd3 %de .................. (218)

Prof. W. A, Norton, of New Haven, Ct., detected the exist-
ence of the last term, involving the deflection due to transverse
shearing * directly from experiment. He assumed that this
stress is uniformly distributed over the transverse sections, and
deduced an equation of the same form as the preceding, the
only difference being in the value of the coefficient, @. Al
though the stress increases from the outer surfaces to the neu-
tral axis, as we have seen in Equation (216), yet the resistance to

* Van Nostrand's Eclectic Engineering Magazine, Vol. 8, p. 70, 1871,
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deflection of rectangular beams varies according to the same
law, as if it were evenly distributed.

Prof. Norton’s experiments were made upon prismatic white
pine sticks, and the mean of a large number of experiments
gave

E = 1,427,965 lbs.
3 J— *
and 0= 0.0000094 1bs.
<. G = 40,000 lbs., very nearly.

This is only 4y of the value of Z. So small a value at first
caused a doubt as to the applicability of the formula to fibrous
- beams. But the experiments of Chevandier and Wertheim,
p- 17, give for white pine the coefficient of elasticity in the
direction of the radius 97.7 kil. per sq. millimetres, or 135,950
1bs., and in the direction of the tangent to the layers, 40,680
1bs., from which we see that the value given above may be
correct for the material used, and for the position in which it
was used.
_ Prof. Norton also informed the author that there were dis-
crepancies in the experiments which he was not able to account
for at the time; but that, in the light of Chevandier and Wert-
heim’s experiments, he was of the opinion that they were
mainly due to the position of the layers in the specimens, as
some might have been horizontal, others vertical, and still others
inclined, when the experiments were made. Duleau’s experi-
ments, Article 173, gave for the coeflicient of elasticity for
torsion (perpendicular to the direction of the fibres) 615,472
Ibs. For fibrous bodies there is no simple relation between
the coeflicients of elasticity in the different directions. For
cast iron, wrought iron and steel it is generally assumed that
the coeflicient of shearing elasticity is 4 that for longitudinal
elasticity.
Equation (218) may be written

PR, . EP
A= [1+§—072] ........ (219)

= he represented by C in his equation. .

86‘
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from which we see that the shorter the beam compared with
its depth, the greater is the deflection due to transverse elas-
ticity compared with that due to the direct elasticity. In very
short beams nearly the whole deflection may be due to shear-
ing, while in long ones it may generally be neglected.

- 181. DEFLECTION DUE TO LONGITUDINAL SLIPPING.—
If the lamina were free to slip upon each other, as we have be-
fore illustrated by a pile of boards, they would retain their
original length, and the deflection would be much greater than
if there were no slipping. If the elements were held together
by cohesion, but had no longitudinal shearing elasticity, but
had, as now, a direct longitudinal elasticity and a transverse
shearing elasticity, Equation (218) would give the deflection
for rectangular beams supported at their ends and loaded at
the middle. If the sections remained plane and were forced
past each other, as in Fig. 26, without bending by flexure,
then the total deflection would be given by Formula (2172).
But there is a longitudinal shearing stress at every point where
there is a transverse shearing, and the elasticity of the material
permits a corresponding longitudinal shearing strain,and hence
there is slipping, and the longitudinal elements are independent
of each other to just the extent of the slipping and no more.
When the longitudinal shearing elasticity is the same as the
transverse, Equation (217) shows the total effect in a cross sec-
tion of the shearing in a rectangular beam.

Join o0 and a, Fig. 212, with a straight line, and conceive that
the beam turns about o so as to produce an opening a¢ at a.
This would cause a deflection which we call 3, and by similar
triangles we have ‘

ac:3d::do:x
__2ae
d8_7:c
3P G _3P
=3 0id 8+F]w_0dznearly.

Although this is not the correct expression due to longitudi-
nal slipping, yet we may safely assume that it is proportional
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to it. The longitudinal shearing elasticity may differ from the
transverse. If then G be the coeflicient of longitudinal shear-
ing elasticity, and # the ratio between the preceding expression
and the true one, then the expression for the deflection due to
this cause will be
3P
rGbd
But the total deflection will be the sum of the expressions which
result by giving to z all possible values from & = 0 to = the

length considered ;
3P

S8 = G5

which for a rectangular beam fixed at one end and loaded at
the free end, becomes

xdw ;

PP

2rGibd’

and if supported at its ends and loaded at the middle, 3P =
3P, and

d=

_pPr
T 16rGbd
This added to Equation (218) gives for the total deflection of a

rectangular beam which is supported at its ends and loaded at
the middle, A

)

_ P PR 3P
4= 1ma  t6rezat 300

LA 919
4bd Ed‘*‘ 4G, G ] (2194)

NOTE.—As these pages are passing through the press, the author has re-
ceived the following note from Professor Norton, which I am pleased to insert
in this place, although I do not agree with his theoretical views. The fact,
however, that his new formula represents the results of his experiments so
accurately makes it worthy of serious consideration :

++ I find that the entire series of experiments which I have made on the de-
flection of pine sticks, and iron and steel bars, loaded at the middle and rest-
ing on supports, are represented with great accuracy by the following formula :

Pl
4=0% + Y ipa
in which { denotes the length, b the breadth, and & the depth of the rectan-
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gular stick or bar, P the load at its middle, £ the coefficient of elasticity, and
O a constant coefficient. The old formula, 4 = 41;?21‘
which it appears from my experiments are very wide of the truth, unless the
ratio of the length to the depth is large. These laws are, that the deflection is
directly proportional to the cube of the length, and inversely proportional to
the cube of the depth. The coefficient of elasticity, X, as determined with it,
from any observed deflection, 4, is ordinarily much too large. For example,
it gives me for the wrought-iron bar I have used, as the value of E, 36,833,-
000 Ibs., and for the steel bar 37,066,000 lbs.
¢ The formula which I before obtained is

involves two laws,

P P

8= 0%+ fma
This, with certain values of E and C, represented my experiments with white
pine sticks much more satisfactorily than the old formula just referred to;
but the experiments on the deflection of wrought-iron and steel bars have
shown it to be faulty—whether regarded as an empirical formula, or from
the theoretical point of view—though it gives results that approximate more
nearly to the truth than the one in general use.

¢“In the new formula the first term represents the portion of the linear de-
flection resulting directly from the shearing stress, propagated from the mid-
dle of the bar to either point of support. This I had before conceived to be
proportional to the length of the bar, but it appears, on careful consideration,
that it is proportional to the square of the length. This may be seen by
taking the case of a bar fastened at one end and loaded at the free end, and -
reflecting that when any one material section slips on the next one on the side
towards the support, it must take down with it in this act all the bar be-
tween it and the free end, just as if this were an index extending out from the
point considered. The molecular actions by which this is effected will un-
doubtedly give rise incidentally to small longitudinal strains, by which the
relative positions of the molecules of the two contiguous sections will be some-
what disturbed. Accordingly, the linear deflection of the end of the bar, re-
sulting from the shearing stress taking effect along the whole length of the
bar, should be proportional to the square of the length, The same conclusion
will obviously apply to the case of a bar loaded at its middle and resting on
two supports. The effect of the shearing stress should also be inversely pro-
portional to the area of the cross section, or dd, and directly proportional to

2

We thus obtain, on theoretical grounds, the term O’ 2£ % ITld' Now let
= coefficient of elastic resistance to transverse shearing stress, and let m =

e Q= g The value of O' for the distance 1 is (l—}, org. The new term

2 ¢
becomes, ' then, —8% f—;, for which we may take O 17:;—

3
¢‘The other term in the formula, viz., ;11%,? differs from the ordinary ex-

pression for the deflection due to the longitudinal strains on the fibres, in con-

QRN
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taining the factor g With regard to this I will only state here that this is

the expression for the deflection attendant on the longitudinal strains, which
I deduced a year or two since, directly from the fundamental conception
thpt these strains are the incidental effects of the shearing- stress, without
using the principle of the lever or of moments. I now find it to be verified
by the results of my experiments. It may be well to add that this expres .
sion was not adopted, in my recent attempt to represent the experiments,

until the ordinary expression 42,); 70 Va8 found to fail, giving values of & far

too large.
‘¢ For the pine sticks the value of m, 88 derived from the values of C and &
by the relation 0 = -, falls between 2 and 4. It varies with the different

SE ’

sticks used, with the inclination of the layers to the horizontal. When the
layers were horizontal, the value of m was 4; when they were vertical it was
2. In one of the sticks the inclination was nearly 45°, and the value of m
came out 2.93. In the case of another stick the inclination, in one experi-
ment, was about 25°, and in another 65°; and the values of 7 obtained are
2.18 and 3.55, the average of which is 2.86. The values of X obtained varied
with the different sticks from 933,000 to 1,093,000 lbs.

‘‘For the wrought-iron and steel bars (1 in. by # in.) the value of m was a
little less than 2 when the bar rested edgewise on its supports, and 4 when it
rested flatwise; or the same as with pine sticks when their layers were verti-
cal or horizontal. This is a remarkable result, since it indicates that the bars
were made up of lamine parallel to the breadth, with separating spaces of
weaker molecular forces, called into action by vertical displacements. This
condition of things is no doubt attributable to the operation of rolling, to
which the bars have been subjected. This, I conceive, from theoretical con-
siderations, ought to have had the effect to weaken the effective molecular
forces in the vertical direction, and augment them in the horizontal direction.
The value of E, for the iron bar, was found to be 25,220,000 1bs., and for the
steel bar 25,333,000 1bs.”

182, DIRECTION OF MAXIMUM AND MINIMUM STRAINS
at any point of the longitudinal section of a beam

Let ABCD be an element,
3 Pw
2 = the pull or push per unit of section AD, = -7
Eq. (212).
X = the shearing per unit on the surface 4.5,
_3P
=70 yUyd% Eq. (213)
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which for rectangular beams i 35 822 [}d’ 4’1, Eq. (216),

Z = the transverse shearing per unit on AD, = X,

B = the variable angle ABD,

XV = the normal component of the stresses per unit on the
plane BD, and

Ss = the shearing stress per unit along BD.

Fi1a. 113.

For the sake of simplicity, consider a rectangular beam,
which is fixed at one end and loaded with a weight? at the free
end. Then 5P = P, and we have

_12Pxy
e (220)
ad X'=Z = [(%d)” Pleeeeeeiananaanns (221)

‘We also have

X.A B = the total shearing on 4B,

Z.AD = X . AD = the total shearing on 4D,
2.AD = the direct pull or push on 4D,

N.BD = the total normal component on BD, and
Ss.B D = the total shearing pull or push on BD.

Resolving the forces normally and parallel to BD, and we
have

S8.BD = AB. XcosB — AD. XsinB + AD. pcosp

N.BD = AB.XsinB + AD.XcosB + BD.psinB
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AB _ . AD .
ButB—D =cos@; and D= sinB
. 88 = X(cos’8 — 8in®B) + psinBeosB = Xcos2B -+
FPBI02B.. i e (222)
N = 2XsinBcosB + psin’B = 2Xsin28 + $p(1 —
COB2B) . vttt e e e (223)
Hence, Ss is & magximum for ‘ '
tang2B = 5%' = tang2B, (say)........ (224)

_P 08 2K
Vg +axe = i

hence the maximum of the shearing force is

o sin2,3l =

Ssm=VEpF + X.ovoiiii... (224a)
Similarly, for & we have for a maximum or minimum
tang28, = — %p‘f ..... U (225)

< tang2B; tang2B, = — 1
or 231 = 90° + 232
.'.B1:45°+Bg; .
hence the lines of maximum shearing cut the lines of maximum

direct stress at angles of 45 degrees.
28, may have two values @ and 180° + a ... 8= %a or 90° + {a

. 2X P
sin2B, = = co82B =+ —F
h=TF o R
the upper signs correspond to a minimum and the lower to a

maximum.
The maximum value of XV is

Vo= 1ip + P 7 X
and the minimum value is
Ny=ip— VP ¥ X0
On the compressive side of the beam we have
' 88 = X(cos’8—sin’B) — psinBceosB
N = 2 XsinBcosB — psin’B
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Discussiox.
-

On the neutral axis p =0 ‘

<. tang2B8, = 0 and 28, = 0 or 180° ... 8, = 0 or 90°
tang28, = o ; 28, = 90° or 270° .. B, = 45° or 135°
and bs,,._XandN,,,_Xand Ny=—-X

This shows that the intensity of the shearing stress on the
neutral axis is a maximum along the axis, and is of the same
value as at right angles to it and equals X. The equality was
shown in Art.177. The maximum direct stress is normal to a
section which is inclined 135 degrees to the axis, and the mini-
mum at an angle of 45 degrees. Its value per unit is /¥, = X.
This may be shown directly, for it is evidently the resultant
of two rectangular shearing forces each equal to X, and hence
is 4/2X'; but the area is 42 times the horizontal unit ; hence
the stress per unit will be 2 X - y2 = X, as given above

At the outer elements X = 0
- tang2B, = w0 ; 28, = 90° and B, = 45°
tang2B; = — 0; 28, = 180° or 0° and B; = 90° or 0°
Ssp=13p -
N,=pand N,=0
That is, the maximum stress is normal to a section which is
perpendicular to the neutral axis; in other words, it is parallel
to the axis and equals the pulling stress, as it should. The

i

minimum value is zero in a direction normal to the sarface,

and the maximum shearing stress is along a section which is
inclined 45 degrees to the axis, and its intensity is $p, which
agrees with Article 177.

For any point we have from Egs. (220), (221), (224) and
(225); .

tang2ﬁl = }_d’_—?
A

zy
12’ —
tang28, = — ——L ......... 226
gaR,y = oy . (226)
In the last e'quation take successive values for # (as =¥,
3., 31, etc.), and for each value substitute values of y (such as
3 of d, § of 3d, etc.), and determine the corresponding values
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of B,. Lay off the computed angles at the points whose coordi-
nates are thus assumed. The lines of maximum direct stress will
be normal to the lines thus constructed. But since the angles
for a maximum and minimum differ by 90 degrees, the incli-
nation of the lines so constructed will correspond in direction
with (say) the maximum, and the normal to it with the mini-
mum stress. By determining a sufficient number of points a
network of lines may be drawn, as in Fig. 114, which represent

Fia. 114,

the direction of the lines of maximum and minimum stress,
those concave downwards corresponding to tension, and those
concave upwards to compression.

The parts more nearly horizontal. correspond to the maxi-
mum, and the steeper parts to a minimum. They cross the
neutral axis at angles of 45 degrees, and each other at all
points at right angles, and the axes of minimum stress cut the
surfaces at right angles, and the axes of maximum stress are
parallel to it at the surface.

In a similar manner lines of maximum shéar may be drawn.

To find the equation of one of these curves, we have (the
axis of the stress being normal to the elementary section)

dy de
T cot, or 2= tang,
1 — tang8, 2X
=-_F __ 24
But tang28, Stangh, — " p
.-.@L:tangﬁ =+ 5 +1/1+ VAR [P
dy ! 2X 4X*~ X X
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whence, by Equations (220) and (221)

=1 - ay
* [*‘[‘ -y + Tar— .7/‘)”]

which is the differential equation of the curve, but I do not
think that it can but integrated in finite terms.

Remark.—The analysis by which Poisson and others determined that the
coefficient of lateral contraction is % that of the longitudinal dilation, both
per unit, has been criticised by Thomson and Tait. (See their Natural Phs-
losophy, 1867, Vol. 1., p. 521.) They give the following:—

Let n = the rigidity, which according to our notation = (' = ¢ (4 — B),
and k& = the resistance to dilation =-Il) = % (4 + 2B); then the linear elon-

L 1 1 A+B . .
gatlon, = (gr-‘ + 9_16) P~—mp, and the linear eontractlon,

i, = (6 9k) A’+AB YL P, which are the values of ¢, and ¢, fol-

lowing Eq. (209) in the preceding text.
We have
t, — B

A+ B

in which, if the ratio is , Bwill be $4. These substituted in Eq. (208a) give
E = {4 = }B(or$G),

as before found. That this result is approximately true for iron has been
shown by the experiments of M. Wertheim.*

For ordinary glass and crystal he found 2.4 nearly for the ratio.

But there are some isotropic solids in which this is not the correct ratio,
such as India rubber and elastic jellies. In such cases the value of B must be
determined by experiment.

1 assumed that C = B = @, because it is approximately traue for those solids
which are more commenly used by the engineer, and also because it greatly
simplifies the investigation.

- The problem of the distortion of a prism which 18 subjected to torsion has
been thoroughly discussed by St. Venant. He determined the character of the
sections which originally were plane and normal to the axis of torsion; also
determined the correction which should be a.pphed to Coulomb’s formnla
also compared his results with those of experiment, and deduced eonclumons
of great value to the engineer. This problem alone furnishes sufficient mate-
rial to fill & volume.

It was unnecessary to introduce the letter C into the notation on page 220
and the following, since it is the same as E, previously used; but I did so be-
cause it has been used by other writers, and I desired to show its relation to
my notation.

Comptes Rendus, t. xxviii., p. 126.



/ EFFECT OF LONG-CONTINUED STRAINS, 241

CHAPTER X.

EFFECT OF LONG-CONTINUED STRAINS—OF OFT-REPEATED
STRAINS, AND OF SHOCKS—REMARKS UPON THE CRYSTAL-
LIZATION OF IRON.

EFFECT OF LONG-CONTINUED STRAINS.

183. GENERAL EFFECT.—The values of the coefficients
of elasticity and the modulii of tenacity, crushing, and of rup-
ture were determined from strains which were continued for a
short time—generally only a few minutes—or until equilibrinmn
was apparently established ; and yet it is well known that if the
strain is severe, the distortion, whether for extension, compres-
sion, or bending, will increase for a long time ; and as for rup-
ture, it always takes time to break a piece, however suddenly
rupture may be produced. By sudden rupture we only mean
that it is produced in a very short timne.

The encreased elongation due to a prolonged duration of the
strain beyond a few minutes will affect the coefficient of elas-
ticity but very slightly, for the strains which are used in deter-
mining it are always comparatively small, and the greater part
of the effect is produced immediately after the stress is applied.
If the distortion should go on indefinitely under the action of a
constant load, no matter how slowly, the elasticity, and hence
the coeflicient, would be greatly modified by a very great dura-
tion of the stress ; and at last rupture would take place. If the
basis of this reasoning be well founded, we might reasonably
fear the ultimate stability of all structures, and especially those
in which there are members subjected to tension. But the con-
tinued stability of structures which have stood for centuries,
teaches us, practically at least, that in all cases in which the
strain is not too severe, equilibrinm becomes established between
the stresses and strains, and in such cases the piece will sustain

the stress for an indefinitely long time.
16
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184. HODGKINSON’S EXPERIMENTS.—The results of the
experiments which are recorded in Article 45, page 52, show
that in one case the compression increased with the duration of
the strain for three-fourths of an hour. In the case of exten-
sion on another bar, as shown in Article VIL,, page 7, it appears
that the same weight produced an increased elongation for nine
hours ; but during the last, or tenth hour, there was no increase
over that at the end of the ninth hour.

In both these cases the strain was more than one-half that of
the ultimate strength.

183, vicAT™s EXPERIMENTS.— M. Vicat took wrought-
“iron wire and subjected it to an uniform stress for thirty-three
months. The elongations produced by the several weights were
measured soon after the weights were applied, and total lengths
determined from time to time during the thirty-three months.
It was found for all but the first wire, as given in the following
table, that the increased elongations after the first one were
“very nearly proportional to the duration of the stress. (Annales
de Chemie et Physique, Vol. 54, 2d serics.)

TABLE
Of the Results of M. Vicat's Ezperiments on Wrought-iron Wire.

Increased Elongation after 33

Ampount of Strain. monihe,

-4 of its ultimate tensile strength. No additional increase.

4 of its ultimate tensile strength. 0.027 of an inch per foot.

.','; of its ultimate tensile strength. 0.040 of an inch per foot.

Very soon after theL
weights were laid on the |
elongation of each piece |

was determined.

‘3 of its ultimate tensile strength. 0.061 of an inch per foot.

186. FAIRBAIRN'S EXPERIMENTS.—[airbairn made ex-
periments upon several bars of iron, which were subjected to a
transverse strain, the results of some of which are recorded in
the following tables. (See Cust and Wrought Iron, by Wm.
Fuirbairn). The bars were four feet six inches between the




EFFECT OF LONG-CONTINUED STRAINS. 243

supports, and weights were applied at the middle, and permit-
ted to remain there several years, as indicated by the tables.
The deflections were noted from time to. time, and the results
were recorded.

TABLE L
In which the Weight Applied was 336 pounds.

s 8
: PRI PR |
- -] s > ‘g !
Sg S g_g =8
TEMPERATURE. g A o
w4 és L] °.8
.8 Sg 59 )
8 © 8 38 883
A 3 E E e
March 11, 1837....| 1.270 1.461 Cold-blast,
8° June 3, 1838.......| 1.318 1.538 0.661 : 1
72° July 5, 1839....... 1.305 1533 Hot-blast
61° June 6 1840.. 1 303 1.520 0.694 : 1
50° November 22, 1841 1.306 - 1.620
58° April 19, 184~ ...... 1.308 1.620
Mean........... 1.301 1.548

Previous to taking the observations in November and April
the hot-blast bar had been disturbed.

In regard to this experiment Mr. Fairbairn remarks:—“ The
above experiments show a progressive increase in the deflec-
tions of the cold-blast bar during a period of five years of 0.031
of an inch, and of 0.087 of the hot—blast bar.” The numerical
results are found by comparing the first deflection with the
mean of all the observed deflections. But an exainination of
the table shows that the greatest deflection, which was observed
in both cases, was at the second observation, which was about
a year and a quarter after the weight was applied, and during
the next two years the deflections decreased 0.015 of an inch
for the cold blast, and 0.018 of an inch for the hot-blast bar.
After this the deflections appear to increase for the cold-blast
bar 0.005 of an inch the next two years. Considering all the
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particulars of these experiments it does not seem just to con-
clude that the deflections would have gone on increasing indefi-
nitely with a continuance of the load. Admitting that the
_small increase of deflections during the last two years are cor-
rect and not due to errors of observation, we see no reason why
the deflections would not be as likely to decrease after a time
as they were after the first year.

TABLE II.
In which the Bar was Loaded with 392 pounds.

8y
g 2
$
i | g g
— s ;.a E
¥ g 3”3 4 3 "1‘;
38 53 58 283
S U
1.684 1.715
78° 1.824 1.803 For cold-blast,
72° 1.824 1.798 0.771: 1
61° 1.825 1.798 For hot-blast,
50° 1.829 1.804 0.805 : 1
58° 1.828 1.812
Mean........... 1.802 1.788

Here we see a general increase in the deflections from year
to year, but the changes are not entirely regular. The princi-
pal increase is during the first year. In the cold-blast there
was a slight decrease of deflection during the last year, and in
the cold-blast it was less at the third and fourth measurement
than at the second.
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TABLE IIL
ylg | B
. | g Esa
TEMPERATURE. g.ﬂ a2 Ei;
] ; a4 ﬁ-‘! ‘s§§
£3 23 2§ 38%
2 3 5 3
March 6, 1837... ... 1.410 4%
8° June 23, 1838... ... 1.457 g Cold-blast,
79° July 5, 1839....... 1446 | HE
61° June 6, 1840.. .. ... 1.445 o B 0.881: 1
50° November 22, 1841.| 1.449 | >3
58° April 19, 1842...... 1449 | £2§
43
Mean........... 1.442

‘We find from this table, as from Table L., that the maximum
deflection was observed about a year and a quarter after the
weight was applied, and that it decreased during the next two
years, after which it slightly increased. The deflections were
the same at the two last observations. These changes took
place under the severe strain of more than four-fifths of the
breaking weight. These experiments ¢ndicate that for a steady
strain which is less than three-fourths of the ultimate strength
of the bar, the deflection will not increase progressively until
rupture takes place, but will be confined within small limits.

187. ROEBLING’S 0BSERVATIONS.—The old Monongahela
bridge in Pennsylvania, after thirty years of severe service, was
removed to make place for a new structure. The iron which
was taken from the old structure was carefully examined and
tested by Mr. Roebling, and found to be in such good condition
that it was introduced by him into the new bridge.*

He also found that the iron in another bridge over the Alle-

* Roebling’s Report on the Niagara Railroad Bridge, 1860, p. 17; Jour.
.Frank. Inst., 1860, Vol. LXX, p. 861,
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ghany River was in good condition after forty-one years of
service.

188. OFT-REPEATED sTRAINS.—Nearly all kinds of struc-
tures are subjected to greater strains at certain times than at
others, and some structures, as bridges and certain machines,
are subject to almost constant changes in the strains. Loads
are put on and removed, and the operation constantly repeated.
The following experiments for determining the effect of a load
which is placed upon a bar and then removed, and the operation
of which was frequently repeated, were made by Wm. Fair-
bairn, in 1860.* The beam was supported at its ends, and the
weight which produced the strain was raised and lowered by
means of a crank and pitman, as in Fig. 115.

Fr1a. 115,

The gearing was connected with a water-wheel, which was
kept in motion day and night, and the number of changes of
the load were registered by an automatic counter. The beam
was 20 feet clear span and 16 inches deep. The.dimensions of
the cross section were as follows:

Top—Plate, 4 x $=............. 2.00 sq. mches.
Angle irons, 2 x 2 x {5 =...2.30 «
Bottom—Plate, 4 x +=.......... 2.00 « «

Angle irons, 2 X 2 X {#=.1.40 ¢« ¢«
Web—Plate, 153 x ¢ =...........1.90 « «

Total.....covvnviiiini, 8.60 «  «
Weight of beam, 1 cwt. 3 grs. 3 lhs.
Probable breaking weight, 9.6 tons.

* Civ. Eng. and Arch. Jour., Vol. XXIIL, p. 257, and Vol. XXIV., p. 821..
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* First Experiment.—Beam loaded to } the breaking weight : —

Total applied load................ 5,809 lbs.
Half the weight of the beam....... 434 «
Strain on the bottom flange. ... ... .4.3 tons per sq. inch.
Margin of strength by Board of
Trade........... e 3.4
TABLE

Of the Results of Experiments made upon a Beam which was Supported at its
Ends, and a Weight repoatedly but gradually Applied at the Middle.

g g

g |8 i |8
g 5 Er
DATE. & 5 g DATE. é gg

|5 |3
5 (-] 5 $%

Z & z A
...... 0.17 268,328 | 0.1
10.540 | 0.18 281,210 | 0.1
15,610 | 0.16 821,015 | 0.1
27,840 | . ... 343,880 | 0.1
46,100 | 0.16 390,430 | 0.1
57,790 | 0.17 408,264 | 0.1
72,440 | 0.17 417,940 | 0.1
85.960 | 0.17 4491280 | 0.1
97,420 | 0.17 468,600 | 0.1
112,810 | 0.17 489,769 | 0.1
144,350 | 0.16 512,181 | 0.1
165,710 | 0.18 536,356 | 0.1
202,890 | 0.17 560,529 | 0.1
235,811 | 0.17 . 596,790 | 0.1

SOOI NNDT=T~I~T

At this point, after half a million of changes, the beam did
not appear to be damaged. At first it took a permanent set of
0.01 of an inch, which did not appear to increase afterwards,
and the mean deflection for the last changes were less than for
the first. For the last seventeen days the deflection was uni-
form, but for the first seventeen days it was variable.

The moving load was now increased to one-third the break-
ing weight, = 7,406 1bs., with the following results:-
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] £
DATE. 5. ‘2 DATE. 8. §
3| % | | 3
S < ]
z & l Z E
1860. 1860.

May 14.........| ...... 0.22 | June T......... 217,300 | 0.21
15......... 12,623 | 0.22 - SO . 0.21
17......... 36,417 | 0.22 120, 264,220 | 0.21
19......... 53,770 | 0.21 16......... 292,600 | 0.22
22.... ... 85,820 | 0.22 2l......... 327,000 | 0.23
2......... 128,300 | 0.22 28......... 350,000 | 0.25
2......... 161,500 | 0.22 25......... 375,650 | 0.23
8l......... 177,000 | 0.22 26......... 403,210 | 0.23

June 4......... 194,500 | 0.21

The beam had now received 1,000,000 changes of the load,
but it remained uninjured. The moving load was now in-
creased to 10,050 Ibs.—or one-half the breaking-weight—and it
The beam was then repaired by
riveting a piece on the lower flange, so that the sectional area
was the same as before, and the experiment was continued.
Oune hundred and fifty-eight changes were made with a load
equal to one-half the breaking weight; and the load was then
reduced to two-fifths the breaking weight, and 25,900 changes
made. Lastly, the load was reduced to one-third the breaking
weight, with the following results :—

broke with 5,175 changes.
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El R
s’ g | a’ &
DATE. 8 'g DATE. g . -
'52 ‘53 3
g & 2
1860. ! 1860.
August 13....... 25,900 | 0.18 |Dec. 22 .......... 929,470 | 0.18
A 16....... 46326 | . .. 29 1,024,500 | . ...
’ 20....... 71,000
24, .. 101,760 1,121,100
% ... 107,000 1,278,000
31....... 135,260 1,342,800 .
Sept. 1ooo.... 140,500 1,426,
8....... 189.500 1,485,000
15....... 242,860 1,543,000
...... © 277,000 1,602,000 .
30....... 320,000 . 1,661,000
QOctober 6 ...... 875,000 1,720,000 | 0.18
1 1,779.000 | 0.17
1,829,000
1,865,000 | ... ..
1.945,000
2,000,000
2,059,000
2,110,000 | ....
2,165,000
2.250,000 | ...
0.18 2,721.754 | 0.17

The piece had now received nearly 4,000,000 changes in all,
but the 2,727,000 changes after it was once broken and re-
paired did not injure it. The changes were not very rapid.
During the first experiment they averaged about 11,000 per
day, or less than eight per minute, and during the last experi-
ment the highest rate of change appears to have been less than
eleven per minute, which is very slow compared with the
strokes of some forge hammers.

189, STIFFENING UNDER STRAIN.—The experinents re-
corded in Articles 31, 185, and 186, indicate that iron may be-
come stiffer, if not stronger, under strain. That such is the
fact has recently been confirmed in a very striking manner by
the experiments of Professor Thurston (hereafter given), and
the following experiment, which was made by Commander L.
W. Beardslee, of the U. S. Navy.*

* Reported by Prof. Thurston to the Am. Soc. of Civ. Eng., New York, Nov.,
1874. The specimen is preserved in The Stevens' Institute of Technology.
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The bar was of Pheenix iron, with an eye formed at each -
end. It was pulled apart by a hydraulic machine, and registered

[

Fia. 116,

with weights and levers. It was originally 1§ inches in diame-
ter, but was drawn down to 1% of an inch at @, when it suddenly
broke in the weld near the eye, with 67,800 pounds. The rest
of the bar was slightly tapered, but with no marked diminution.

" A new.eye was welded on, and the next day it was put in the
testing machine, when, instead of breaking at a, it began to
yield and draw down at &, and finally broke at that point under
a strain of 88,000 pounds.

Such are the facts in regard to this remarkable fracture.
Had the eye not broken, it is quite certain that the bar would
have broken at a. The particles then were moving (flowing)
over each other more rapidly than at any other point, and were,
apparently, on the verge of separation. By being relieved of
the strain for a day (resting) its strength was greatly increased,
so that it was stronger at the reduced section on the second day
than the full section was on the former day. It would appa-
rently have broken on the first day with a strain somewhat ex-
ceeding 68,000 pounds, but on the second day it sustained
88,000 pounds at that point without fracture, which is a very
large increase in the strength.

The most that can be said with certainty is, that the particles
by flowing over each other, and having time to come to rest in
their new positions, the cohesive force between them was in-’
creased. The contraction necessarily develops heat, and it is
probable that the heat during the flowing, and the abstraction
of it afterwards, played an important part in securing the in-°
creased cohesion.

190. smocks.—In a broad sense, a shock is the impinging
of one mass against another, whereby the velocity of one or
Yoth of the masses is suddenly changed. In common language
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it is a dlow produced by one solid body striking another. In
the impact of gases, liquids and semi-fluids, skocks are not con-
sidered. When the motion of a rigid body is gradwually changed,
like the connecting rod, or the pitman of an engine, shocks are
not produced. If a moving mass be brought to rest by a resist- -
ance acting through a finite space, the shock is much less than
if it be arrested more suddenly. Thus a forge hammer in
striking a molten mass of metal produces but little shock, whereas
the same blow upon cold metal may produce a severe shock.
No moving mass can be brought to rest instantaneously, but
the more rigid the masses, and the more unyielding the supports
of the body receiving the blow, the more suddenly will the
blow be arrested, and the more severe will be the shock.

The effect of shocks may be greatly modified by the intro-
duction of springs. Thus, the use of steel, rubber and wooden
springs in vehicles and machines are familiar examples, and if
the springs have but little mass, and have suflicient range of
action, they may very nearly remove the effect which shocks
would otherwise produce.

Oft-continued and long-repeated shocks upon metals are
quite certain to produce fracture sooner or later. One who is
unaccustomed to these effects is apt to be surprised at the fail-
ure of iron or steel after it has sustained a moderate shock for
a long time, but those who are accustomed to them seek to an-
ticipate and provide against them. All metals in use have their
“life.” In some cases they are worn out, but in many others
they break after a time. They can sustain only a certain
amount of service. All machinery, tools, implements, vehicles,
etc., have to be renewed. DBut there is nothing more uniformly
disastrous. to machinery, or which produces results more unex-
pectedly than shocks.

The following example is a good illustration of its effects.

To aid in the handling of large masses of iron while being
forged, a long bar of iron is sometimes forged to them to serve
as a handle. This handle is called a “ Porter bar,” and may be
used repeatedly for the same purpose.

At the West Point Foundry a Porter bar, which had been in
use about twenty years, broke near the middle whilst the ham-
mer was at work upon the forging which was attached to the
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other end. The bar was about twenty feet long and twelve
inches in diameter at the smaller end, and twenty-three inches
at the end where it was attached to the forging. It was about
fourtcen inches in diameter where it broke. It was slung on a
chain in the usual manner, and the fracture was between the
free end and where it was slung, and some two or three feet
from the latter place.

The appearance of the fracture was described as highly crys-
talline and a clean break. The piece broken off probably
weighed a ton and a half. It would have required a load of
nearly fourteen tons applied at the end to have broken it if the
iron was sound.

This is a remarkable fracture for iron. It is not probable
that the iron was crystallized, but that it had that appearance
on account of the character of the breakage, as will be explained
hereafter.

The heavy end, which served as a handle, was caused to
vibrate under the action of the hammer, and doubtless caused
excessive strains which started a fracture; and by repeating
the operation from time to time finally caused rupture.

The writer is familiar with similar examples in the case of
steel. Where the steel had been subjected to repeated shocks,
one end of a bar would drop off while the smith was at work
upon the other end.

The fracture in such cases is doubtless a slow process. At
first a mere crack is started, which increases slowly by the re-
peated blows, but is unseen by the observer until the piece is so
much weakened that it fails suddenly at last.

The effect of a low temperature upon metals when subjected
to shocks is not fully determined. When subjected to a steady
tensile strain, numerous experiments prove conclusively that
iron is stronger at very low temperatures than at ordinary tem-
peratures. But it is commonly supposed that machinery, tools,
rails on the railroad, tyres on locomotives, axles under the cars,
ete., break more easily when cold than when warm. Steel rails
when they first came into use were supposed to be more liable
to break when cold than iron ones, but they have now come
into extensive use, and there are no more breakages than for-
merly, and probably not as many. :




EFFECT OF SHOCKS. 253

Mr. Sandberg, the translator of Styffe’s work,* thought it
probable that iron when subjected to shocks might not give the
same relative strength at different temperatures that it would
when subjected to a steady strain. Ile therefore instituted a
series of experiments to satisfy himself upon this important
point, and aid in solving the -problem. The following is an
abstract of his report:—

The supports for the rails in the experiments were two large
granite blocks which rested upon granite rocks in their native
bed. The rails were supported near their ends on these blocks.
They were broken by a ball which weighed 9 cwt., which was
permitted to fall five feet the first blow, and the height increased
one foot at each succeeding fall, and the deflection measured
after each impact. A small piece of wrought-iron was placed
on the top of each rail to receive the blow, so as to concentrate
its effect.

The rail was thus broken into two halves, and each part was
afterward broken at different temperatures. As the experi-
ments were not made till the latter part of the winter, the
lowest temperature secured was only 10° Fahr. Fourteen rails
were tested :—Seven of which were from Wales; five from
France; and two from Belginm. Trom these the experimenter
drew the following conclusions :—

1. “That for such iron as is usually employed for rails in the
three principal rail-making countries (Wales, France, and Bel-
gium), the breaking strain, as tested by sudden blows or shocks,
is considerably influenced by cold ; such iron exhibiting at 10°
F., only one-third to one-fourth of the strength which it pos-

-sesses at 84° F.

2. “That the ductility and flexibility of such iron is also
much affected by cold, rails broken at 10° F., showing on an
average a permanent deflection of less than one inch, whilst the
other halves of the same rails, broken at 84° F., showed less
than four inches before facture.”

These experiments seem to be conclusive for the iron which
was tested.

* The Elasticity, Extensibility, and Tensile Strength of Iron ahd Sted. By
Knut Styffe. Translated by Christer P. Sandberg, London,
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From the official reports of the Verein Deutscher Eisenbakn
Verwaltungen, it appears that during the year 1870, on 22 lines
belonging to the Association, 132 axles of locomotives, tenders,
and carriages were broken. In comparison with the previous
year, in which the fractures amounted to 163, these figures show
an improvement. There is a decrease of 19.3 per cent. on the
service ‘which, considering the extraordinary demands occa-
sioned by the Franco-German war, and the increase of rolling
stock in Austria, appears considerable. The fractures either
occurred or were reported in the months of

December, January, February, in 39 cases.
March to May (inclusive), in 30 «
June to August, “  in2 «
September to November ¢  in 38 «

The influence of the cold season, despite much that has recently
been said to the contrary, is distinetly marked ; from March
till August 55 only, and during the other months 77 axles
broke. The average run of the axles broken in 1870 was as
follows :—

Locomotives ......... 11 years 4 months 13 days.
Tenders. - .... ceees. 13 € 4« 20 «
Carriages. . .......... 11«11« 18 «
Average............. 12 « 2 ~« 99 «

The average mileages of the axles were in the case of
Locomotives 34,241.7 miles (German).

Tenders....31,494.5  « «
Carriages...24,040.1 ¢ “
Average....27,631.1 « «

The maximum mileage attained was 69,000 miles.

But in opposition to this we have the Report of the Massa-
chusetts Railroad Commissioners for 1874. On page 74 of this
report are the following conclusions:—*“ Cold does not make
iron or steel brittle, or unreliable for mechanical purposes.”
“It is not the rule that the most breakages occur on the coldest
days.” “The introduction of -steel, in place of iron rails, has
caused an almost complete cessation of the breakage of rails.” -
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This report, which is the latest upon this point, shows that
there must have been a great improvemént in some respects in
order to secure it.

These results are in opposition to previously formed ideas in
regard to the effect of cold. It being the latest report, and
from a reliable source, we must look for an explanation in the
improved character of the materials in the rails or in the sul-
structure. There doubtless remains much to be learned upon
this subject. It is especially desirable to determine the effect
of the ¢mpurities in the metal. It is probable that those ele-
ments which make iron cold-sheet will cause it to be more
brittle at low than at moderate temperatures; and that good
metals will resist shocks better at low temperatures than at -
moderate ones. '

The following experiments, by John A. Roebling,* bear upon
this subject :

“ The samples tested were about one foot long, and were re-
duced at the centre to exactly three-fourths of an inch square,

-and their ends left larger, were welded to heavy eyes, making

in all a bar three feet long. These were covered with snow
and ice, and left exposed several days and nights. Early in the
morning, before the air grew warmer, a sample inclosed in ice
was put into the testing-machine and at once subjected to a
strain of 26,000 pounds, the bar being in a vertical position,
and left free all around. The iron was capable of resisting
70,000 lbs. to 80,000 lbs. per square inch. A stout mill-hand
struck the reduced section of the piece, horizontally, as hard as
he could, with a Dillet one and a half inches in diameter and
two feet long. The samples resisted from three to one hun-
dred and twenty blows. With a tension of 20,000 lbs. some
good samples resisted 300 blows before breaking.”

The finest and best qualities of iron, or those that have the
highest coefficient elasticity will resist vibration best. Tt is
generally supposed that good iron will resist concussions much
better than steel. Sir William Armstrong, of England, says:—
“The conclusion at which I have long since arrived, and which
I still maintain, is, that although steel has much greater tensile

. * Jour. Frank. Inst., vol. xl., 3d series, p. 361.
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strength than wrought ironm, it is not as well adapted to resist
concussive strains.” This was written many years since, but
at the present day many mechanics prefer iron to steel for
resisting shocks.

191. CRYSTALLIZATION OF IRON.—It i8 observed that
metals which are subjected to oft-repeated and long-continued
shocks become weak ; and when broken in this way they ap-
pear to be crystallized, having apparently undergone a change
of structure. A crystal is a homogeneous inorganic solid,
bounded by plane surfaces, systemnatically arranged. The
quartz crystal is a familiar example. Different sabstances
crystallize in forms which are peculiar to themselves. Metals,
under certain circumstances, crystallize ; and if they are broken
when in this condition the fracture shows small plane sur-
faces, which are the faces of the crystals. It is found in all
cases that crystallized iron vs weaker than the same metal in
its ordinary state. By its ordinary state we mean that wrought
iron is fibrous, and cast iron and steel are grauular in their
appearance.

Iron crystallizes in the cubical system.* Wholer, in break-
ing cast-iron plates readily obtained cubes when the iron had
long been exposed to a white heat in the brickwork of an iron
smelting furnace.

Augustine found cubes in the fractured surface of gun bar-
rels which had long been in use.

Percy found on the surface and interior of a bar of iron,
which had been exposed for a considerable time in a pot of
glass-making furnace, large skeleton octahedra. (He seems to
differ from the preceding in regard to the form of crystals.)

Prof. Miller, of Cambridge, found Bessemer iron to consist
of an aggregation of cubes.

Mallet says :—* The plans of crystallization group themselves
perpendicular to the external surfaces.”

Bar iron will become crystalline if it is exposed for a long
time to a heat considerably below fusion. Hence we see why
large masses which are to be forged may become crystalline,

* Osborn’s Metallurgy, pp. 83-86. See Appendix.
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on account of the long time it takes to heat the mass. Forging
does not destroy the crystals, and forging iron at too low a
temperature makes it tender, while steel at too high a tempera-
ture is brittle. The presence of phosphorus facilitates crystal-
lization.

Time, in the process of breaking iron, will often determine
the character of the fracture. If the fracture is slow, the iron
will generally appear fibrous ; but if it be quick, it may appear
more or less crystalline. This result has been frequently no-
ticed. At Shoeburyness armor-plates were shattered like glass
under the impact of shot at a velocity of 1,200 feet to 1,600
feet per second. They were were made of good fibrous iron.

William Fairbairn says: —* “ We know that in some cases
wrought iron subjected to continuous vibration assumes a crys-
talline structure, and that then the cohesive powers are much
deteriorated ; but we are ignorant of the causes of this change.”

The late Robert Stephensont stated that in all the cases
investigated by him of supposed change of texture, he knew
of no single instance where the reasoning was not defective in
some important link.

Mr. Brunel accepted the theory of molecular change, for a
time, as due to shocks, but afterwards expressed great doubts
as to its correctness, and thought that the appearance depended
more upon the manner of breaking the metal than upon any
molecular change.

Fairbairn presented his view of the probable cause of the
internal change when it takes place in Ais evidence before the
Comimissioners appointed to inquire into the application of
tron to railway structure. He says :—* As regards iron it is
evident that the application and abstraction of heat operates
more powerfully in effecting these changes than probably any
other agency ; and I am inclined to think that we attribute too
much influence to percussion and vibration, and neglect more
obvious causes which are frequently in operation to produce
the change. For example, if we take a bar of iron and heat it
red hot, and then plunge it into water, it is at once converted

* Civ. Eng. and Arch. Jour., Vol. iii., p. 257,
1;( Am. R. Times, March 6, 1869, Boston.
1
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into a crystallized instead of a fibrous body ; and by repeating
this process a few times, any description of malleable iron may
be changed from a fibrous to a crystalline structure. Vibration,
when produced by the blows of a hamnmer or similar causes,
such as the percussive action upon railway axles, I am willing
to admit is considerable ; but I am not prepared to accede to
the almost universal opinion that granulation is produced by
those causes only. I am inclined to think that the injury done
to the body is preduced by the weight of the blow, and not by
the vibration caused by it. If we beat a bar with a small ham-
mer, little or no effect is produced but the blows of a heavy
one, which will shake the piece to the centre, will probably give
the key to the cause which renders it brittls, but probably not
that which causes crystallization. The fact is, in my opinion,
we cannot change a body composed of a fibrous texture to that
of a crystalline character by a mechanical process, except only
in those cases where percussion is carried to the extent of pro-
ducing considerable increase of temperature. We may, how-
ever, shorten the fibres by continual bending, and thus render
the parts brittle, but certainly not change the parts which were
originally fibrous into crystals.

“For example, take the axle of a car or locomotive engine,
which, when heavily loaded and moving with a high velocity,
is severely shocked at every slight mequahty of the rails. If,
under these circumstances, the axle bends—however shghtly—
it is evident that if this bending be continued through many
thousand changes, time only will determine when it will break.
Could we, however, suppose the axle so infinitely rigid as to
resist the effects of percussion, it would then follow that the
internal structure of the iron will not be injured, nor could the
assumed process of crystallization take place.”

The late John*A. Roebling, who designed and constructed
the Niagara Railway Suspension Bridge, in his report on that
structure in 1860,* says he has given attention to this subject
for years, and as the result of his observation, study and experi-
meat, gives as his view that “ a molecular change, or so-called
grawmwlation or crystallization, in consequence of vibration or

* Jour. Frank. Inst., Vol. xL., 84 series, p. 361.
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tension, or both combined, has in no instance been satisfactorily-
proved or demonstrated by experiment.” I further insist
that crystallization in iron or any other metal can never take
place tn a cold state. To form crystals at all, the metal must

‘be in a highly-heated or nearly molten state.” DBut he states
that he is witnessing the fact daily that vibration and tension
combined will greatly affect the strength of iron without chang-
ing its fibrous texture. :

In speaking of the rock-drilling engines used in Hoosac
Tunnel, Mass., which were driven by compressed air, the com-
mittee says: *_ Gradually they began to fail in strength ;
the incessant and rapid blows—counted by millions—to which
they are subjected, appearing to granulate or disintegrate por-
tions of the metals composing them.”

In some recent experiments made in France, interesting in-
formation has been made known in regard to crystalline struc-
ture in wrought-iron. The apparatus consisted of a bent axle,
which was firmly fixed up at the elbow in timber, and which
was subjected to torsion or twist by means of a cog-wheel con-
nected at the end of the horizontal part. At each turn the
angle of torsion was 24 degrees, and a shock was produced each
time that the bar left one tooth to be raised by the next. Seven
axles were submitted to the trial. In the first the movement
lasted one hour, 10,800 revolutions and 32,400 shocks being pro-
duced ; the axle, 2.8; inch diameter, was taken from the machine
and broken by an hydraulic press, but no change in its texture
had occurred. In the second, a new axle having been tried
4 hours, sustained 129,000 torsions, and was afterwards broken
by means of an hydraulic press; no alteration was perceptible
to the naked eye, but, tried by a microscope, the fibres appeared
without adhesion, like a bundle of needles. A third axle was
subjected dunng 12 hours to 338,000 torswns, and broken in
two; a change in its texture and an increased size in the grain
of the iron were observed by the naked eye. In the fourth,
also, the axle was broken in many places after 110 hours and.
2,553,000 torsions. In the fifth, an axle submitted to 23,328,000
torsions during 720 hours, was completely changed in its texture.

* Annual Report of the Commissioners on the Troy and Greenfield Raiiroad
and Hoosac Tunnel. House Doc., No. 80, p. 5, Boston, Masa.
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In the sixth, after ten months, during which the axle was sub-
mitted to 78,735,000 torsions and shocks, fracture produced by
an hydraulic press showed clearly an absolute transformation,
the surface of the rupture being scaly, like pewter. The sev-
enth axle, submitted to 129,304,900 torsions, presented a sur-
face of rupture like that of the sixth, the crystals were found to
be perfectly well-defined, it having lost every appearance of
wrought iron.—U. 8. R. R. and Mining Register, 1872.

The last experiment looks like a proof of the fact that the
internal s¢ructure of iron may be changed by strains and shocks,
but in this example millions of them did not produce rupture.
Much depends upon the severity of the shock. The rapidity
of the blows also has much to do with its durability, since a
rapid movement of the particles may develop heat to such an
extent as to become an important element in the effect produced
upon the metal.

These several facts, thongh apparently somewhat conflicting,
show quite conclusively, that some metals will crystallize under
certain conditions ; that under certain conditions they may be
strained millions of times without being damaged, or at least
without being broken ; that under certain conditions strains and
shocks combined may produce crystallization ; that shocks when
severe will weaken metals, and if they are sufficiently numerous,
will produce rupture. Much evidently remains to be learned
upon this subject. There is a metal called “ Phospho-Bronze,”
which combines in a remarkable degree toughness, rigidity,
hardness and great elastic resistance, which, it is said, will not
crystallize under repeated strains or continued vibration.

192. THE PRACTICAL QUESTION is, how shall the life of
such machines as are necessarily subjected to shocks, be pro-
longed. The steam forge hammer (Nasmyth’s) has been very
troublesome on account of its frequent breakages. The auto-
matic valve arrangement was so troublesome that many preferred
to work them entirely by hand, but at the present day there are
many in which this is as durable as any other part of the ma-
chine. One of the essential features is to take the motion off
from the hammer or piston-rod by a slope, so that the move-
ment of the valve and its mechanism will be gradual. The




CRYSTALLIZATION OF IRON. 261

piston-rod is liable to break. In some very heavy hammers the
rod is keyed to the block and the end, which is square, presses
against blocks of wood which are put in place for the purpose
of relieving the shock, but this only partially cures the ev1l
since the rod is liable to break at the keyhole.

A Mr. Webb, of England, proposed the improvement shown
in Fig. 117.

Fia. 117.

Referring to the figure, it will be seen that the piston-rod,
which is for the main part of its length 4 in. in diameter, is en-
larged at the lower end to 6% in. in diameter, and is shaped
spherically. This spherical portion of the rod is embraced by
the annealed steel castings, B B, which are secured in their
place in the hammer-head by the cotters, A, and the whole
thus forms a kind of ball-and-socket joint, which permits the
hammer head to swivel slightly on the rod without straining
the latter. Mr. Webb first applied this form of hammer-rod
fastening to a five-ton Nasmyth hammer with a 4 in. rod. With
the old mode of attachment, with a cheese end, this hammer
broke a rod every three or four weeks when working ateel, while
a rod with the ball-and-socket joint, which was put in in No-
vember, 1867, has been working ever since, that is, to some
time in 1869, without giving any trouble. The inventor has
also applied a rod thus fitted to five-ton Thwaites and Carbutt’s
hammer with equal suctess.
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One Morrison avoided the difficulty by making the rod very
}a.rge and of uniform size, from the piston down to the hammer

ace.

Mr. Samuel Trethewey, of Pittsburgh, Pa., thought, by re-
ducing the rod at A4, that he would compel the breakage to
take place at that point, and that the repairs could be
more quickly made than when the breakage was
permitted to take place at any point; but, to his sur-
prise and gratification, the rods lasted from two to
three times as long without breaking as they did
when the rods were of uniform size. The ends
taper one-half inch to twelve inches.

Steam rock-drilling machines are of more recent
date than steam hammers, but partake of the same
difficulties, and many more in addition to them.
They must be portable, and hence comparatively
Fre. 118, light; but they have severe work to do, and hence

should be very strong. But for durability they
must have mass.

One of the ways of making such machines successful is to
learn by practical experience where they are liable to break,
and provide them with duplicate parts.

Another efficient way of improving them is to make some
simple non-expensive part, such as a bolt, pin, rod or bar, com-
paratively weak, so that it will break first. The main parts
will thus be preserved, and an ordinary mechanic may make
the repairs. The use of a wooden pin for connecting the parts
which would break when the machine met with a serious ob-
struction, has greatly prolonged the life of certain machines.
All reénterent sharp angles should be avoided in machines sub-
jected to shocks.

The cause of breakages has sometimes been attributed to
crystallization, when the true cause was a lack of strength. In

.case of percussive forces the strain may exceed the amount

estimated, and thus damage the material. As a general rule in
such cases, the greater the amount of metal in the structure,
when properly proportioned, the longer will be its life.

The life of metals, or the amount which they will endure in
performing a certain duty, is being determined approximately
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by actual use. Having determined it, other specimens of simi-
lar quality, when used for the same purpose, should be cast
aside before they fail, after having performed nearly the same
duty. :

193. TaURsSTON'S EXPERIMENTS.*—Professor Thurston,
of the Stevens’ Institute of Technology, has made an entensive
series of experiments upon various materials with a machine of
his own invention, the prominent feature of which is its auto-
matic registry. For the sake of simplicity, compactness, and
economy, he so constructed the machine as to subject the

Fre. 119. Fia. 120.

specimens to torsion. It records automatically at every instant
the moment of the stress, and the total angle of torsion. This
feature enables one to make experiments rapidly and accu-

* Papers read before the Am. Civ. Eng. Society, N. Y., Jour. of the Frank.
Inst. 1874
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rately, and by means of it many qualities may be detected
which otherwise might escape observation.

The twisting force is applied at E, Fig. 119, and the resist-
ance is offered by a weight ). The arms B and ¢ turn upon
independent axes, an enlarged view of one of which is shown
in Fig. 120. The end U swings in the frame, while the other
end is free. At the free end is a rectangular recess M for
receiving one end of the specimen, which is usually made of the
form shown in Fig. 121. The reduced part is one inch long and
five-eighths of an inch in diameter. The other axis faces this,
but a short space is left between the free ends at M.

‘When the specimen is secured in the rectangular recesses,
the axes are virtually connected by the specimen, so that as a
force is applied to the arm | tending to turn it on its axis, it
will at the same time tend to turn the arm B on its axis; but
as the weight D is moved from the vertical position it will
bring a torsive strain on the specimen, and the farther it is
forced out the greater will be the strain. The statical moment
of the weight D will equal the moment of the torsional stress.
The relative angular movements of the arms ¢ and B will be
the measure of the total angle of torsion. It is evident that as
the specimen yields to the strain, the arm ¢ must travel farther
than the arm B, in producing a given strain.

A guide curve Z] of such form that its ordinates are propor-
tional to the torsional moments, and its abscissas proportional
to the arcs moved over by the arm B, is attached to the frame
AA’. The other arm C carries a cylinder @, upon which
paper is clamped for receiving the record. A pencil is secured
to the arm A in such a way that it will be carried around with
it, but which, at the same time, is free to move outward as it
is moved along the curve /. '

After the specimen paper and pencil are arranged, the arm
C is forced around, and arm 2B is thus forced forward, and the
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